Multivariate Time Series Forecasting of Oil Production Based on Ensemble Deep Learning and Genetic Algorithm

多元统计 系列(地层学) 生产(经济) 时间序列 计算机科学 人工智能 遗传算法 集成学习 算法 石油生产 机器学习 计量经济学 数学 工程类 经济 石油工程 生物 宏观经济学 古生物学
作者
Ashraf Eskandar Al-Aghbari,Bernard Kok Bang Lee
标识
DOI:10.2139/ssrn.4460174
摘要

Forecasting oil production is a substantial task in the petroleum industry as it helps decision-makers optimize storage and distribution operations and plan resources more efficiently. However, traditional methods for forecasting oil production, such as Numerical Reservoir Simulation (NRS), can be challenging due to the substantial effort involved and the high uncertainty associated with the various types of data used. Alternative methods, such as analytical methods and Decline Curve Analysis (DCA), fail to accurately reflect the physics of the actual system or account for dynamic changes in oil production operations and conditions. Therefore, more efficient methods are needed. In this study, an ensemble deep learning model composed of a Temporal Convolutional Network (TCN) and Long Short-Term Memory (LSTM) has been proposed, and its hyperparameters were optimized with Genetic Algorithm (GA). The workflow of this study involved extensive preprocessing to ensure the quality and relevance of the input data. As a result, only the interaction terms of average choke size, on stream hours, and time, in addition to gas volume, were utilized in the model development. To verify the robustness of the proposed model, its predictive performance was compared with four other models: LSTM, TCN, GRU, and RNN, using a testing set. The GA-TCN-LSTM model proposed in this study demonstrated promising results, reducing residual variance and outperforming the reference models with an RMSE of 199.39, wMAPE of 5.13, MAE of 117.11, and  of 0.93. Moreover, the proposed model was established using only three consistently available variables with oil production. These input features covered various operating conditions, making the proposed model applicable to most conventional oil fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DT完成签到,获得积分10
1秒前
大模型应助积极冰淇淋采纳,获得10
1秒前
2秒前
下雨的颜色完成签到,获得积分10
2秒前
neurojie发布了新的文献求助20
2秒前
程之杭完成签到,获得积分10
2秒前
cdercder应助李健采纳,获得10
3秒前
Glowing完成签到,获得积分10
3秒前
Akim应助于文静采纳,获得10
4秒前
解剖六楼那小哥完成签到 ,获得积分10
4秒前
小马哥完成签到,获得积分10
4秒前
excellent_shit完成签到,获得积分10
4秒前
咳咳咳完成签到,获得积分0
4秒前
Ivy完成签到,获得积分10
5秒前
哈哈完成签到,获得积分10
5秒前
桐桐应助DK-Ksss采纳,获得10
5秒前
虚幻芷文完成签到,获得积分10
5秒前
5秒前
YY完成签到,获得积分10
6秒前
zhanghezheng发布了新的文献求助10
7秒前
多多看文献完成签到,获得积分10
7秒前
uniquedl完成签到 ,获得积分10
9秒前
爆米花应助Glowing采纳,获得10
11秒前
11秒前
Dasha完成签到,获得积分10
11秒前
wulixin完成签到,获得积分10
11秒前
11秒前
笨笨凡松完成签到 ,获得积分10
12秒前
牛奶拌可乐完成签到 ,获得积分10
12秒前
未来的幻想完成签到,获得积分10
12秒前
neurojie完成签到,获得积分10
12秒前
joe_liu发布了新的文献求助10
12秒前
13秒前
S飞完成签到 ,获得积分10
13秒前
14秒前
星辰完成签到,获得积分10
15秒前
椋鸟应助呆萌绿凝采纳,获得10
15秒前
宁洁元完成签到,获得积分10
15秒前
mochen0722完成签到,获得积分10
16秒前
怦然心动完成签到,获得积分10
16秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808198
求助须知:如何正确求助?哪些是违规求助? 3352921
关于积分的说明 10361382
捐赠科研通 3068951
什么是DOI,文献DOI怎么找? 1685330
邀请新用户注册赠送积分活动 810433
科研通“疑难数据库(出版商)”最低求助积分说明 766150