Causal Inference-based Few-Shot Class-Incremental Learning

过度拟合 计算机科学 推论 人工智能 班级(哲学) 特征(语言学) 机器学习 会话(web分析) 编码(集合论) 一般化 水准点(测量) 模式识别(心理学) 人工神经网络 数学 集合(抽象数据类型) 大地测量学 程序设计语言 地理 哲学 万维网 数学分析 语言学
作者
Weiwei Zhou,Guoqiang Xiao,Michael S. Lew,Song Wu
标识
DOI:10.1145/3652583.3658098
摘要

Few-Shot Class-Incremental Learning (FSCIL) aims to keep recognizing novel classes from a limited number of samples after training on abundant data from base classes while maintaining the performance of the old classes. The challenge, however, is that limited data from new classes not only leads to the issue of overfitting but also catastrophic forgetting. To address these two issues, we propose a causal inference strategy in the mainstream FSCIL framework, which encourages the model to learn significant knowledge in the base training session and enhance the model's ability to extract features to cope with the emergence of unseen classes in the incremental session, by improving the learning of causal relationships between features and predictions for perturbed samples. In addition, to improve the effectiveness of learning new tasks in the incremental sessions while preventing the model from overfitting to the novel class data, we freeze the feature extractor while adding a Fourier transform after the feature extractor in the incremental session. It can denoise the features, strengthen the features of the novel classes, and suppress the error in extracting the features of the limited number of samples directly from the feature extractor. Extensive experiments on CIFAR100, Caltech-USCD Birds-200-2011, and miniImageNet datasets show that our proposed framework achieves state-of-the-art performance on FSCIL. The source code of our designed framework is at https://github.com/SWU-CS-MediaLab/CIFSCIL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大布完成签到,获得积分10
1秒前
风清扬应助EDSS采纳,获得10
1秒前
2秒前
4秒前
XMUh发布了新的文献求助10
5秒前
5秒前
fly圈圈呀发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
7秒前
NexusExplorer应助李安全采纳,获得10
7秒前
8秒前
迅速凝竹发布了新的文献求助10
10秒前
刘华银发布了新的文献求助10
11秒前
11秒前
巫马白桃发布了新的文献求助10
13秒前
15秒前
17秒前
tananna完成签到 ,获得积分10
18秒前
Layqiwook完成签到,获得积分10
19秒前
高工发布了新的文献求助10
20秒前
Fei完成签到,获得积分10
21秒前
Layqiwook发布了新的文献求助10
22秒前
阳光完成签到,获得积分10
23秒前
Jankim完成签到,获得积分10
26秒前
28秒前
31秒前
32秒前
xuening完成签到,获得积分10
32秒前
量子星尘发布了新的文献求助10
33秒前
33秒前
冰魂应助minmi采纳,获得20
34秒前
冬冬发布了新的文献求助10
36秒前
胖墩儿驾到完成签到,获得积分10
36秒前
KH发布了新的文献求助10
37秒前
38秒前
科目三应助CH采纳,获得10
41秒前
43秒前
852应助yiliu4234采纳,获得30
43秒前
小小莫发布了新的文献求助10
43秒前
冰魂应助二十采纳,获得30
43秒前
44秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
The User Experience Team of One (2nd Edition) 600
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881322
求助须知:如何正确求助?哪些是违规求助? 3423718
关于积分的说明 10735730
捐赠科研通 3148673
什么是DOI,文献DOI怎么找? 1737315
邀请新用户注册赠送积分活动 838802
科研通“疑难数据库(出版商)”最低求助积分说明 784087