MASSNet: Multiscale Attention for Single-Stage Ship Instance Segmentation

计算机科学 单级 分割 阶段(地层学) 人工智能 模式识别(心理学) 机器学习 地质学 古生物学 航空航天工程 工程类
作者
Rabi Sharma,Muhammad Saqib,Chin‐Teng Lin,Michael Blumenstein
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:594: 127830-127830
标识
DOI:10.1016/j.neucom.2024.127830
摘要

Maritime surveillance is essential in understanding, predicting, and ensuring the security of events in the complex marine environment. In this context, we have used instance segmentation techniques, which provides an accurate and efficient method for segmenting objects (Ships) in maritime surveillance. However, prevalent two-stage algorithms have limitations, including complex models, extended training time, and high memory consumption, making them impractical for real-world application. To address these challenges, we present an efficient solution called Multiscale Attention for Single-Stage Ship Instance Segmentation, or MASSNet. MASSNet uses the power of attention mechanisms to enhance multiscale feature extraction across various dimensions, resulting in a more refined and contextually-aware representation. This approach significantly improves segmentation accuracy and overall performance. In our extensive experiments, we evaluate the effectiveness of MASSNet on three challenging datasets: MariboatS, ShipInsSeg, and ShipSG. Our proposed model achieves mask Average Precision (mask AP) scores of 55.4%, 55.5%, and 74.1% on MariboatS, ShipInsSeg, and ShipSG datasets and outperforms other models such as YOLACT, SOLO and SOLOv2 architectures. MASSNet offers a robust and efficient solution for Ship Instance Segmentation, making significant improvement in the capabilities of maritime surveillance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
3秒前
5秒前
yangshu完成签到,获得积分10
6秒前
8秒前
神唐1发布了新的文献求助10
9秒前
gg发布了新的文献求助30
9秒前
朴实初夏发布了新的文献求助30
9秒前
yangshu发布了新的文献求助10
9秒前
搞怪的紫雪完成签到,获得积分10
10秒前
11秒前
SCI完成签到,获得积分10
11秒前
xfeng应助saf0852采纳,获得10
12秒前
charolte发布了新的文献求助10
13秒前
优秀的傲南完成签到,获得积分10
15秒前
17秒前
19秒前
20秒前
科研通AI5应助传统的雨文采纳,获得10
20秒前
三三四发布了新的文献求助10
21秒前
lulu完成签到,获得积分10
23秒前
暖暖发布了新的文献求助10
23秒前
Atari完成签到,获得积分10
23秒前
24秒前
健忘幻儿发布了新的文献求助10
25秒前
26秒前
28秒前
lulu发布了新的文献求助10
28秒前
Ya完成签到,获得积分10
29秒前
30秒前
30秒前
111aaa完成签到 ,获得积分10
31秒前
Zhao2070发布了新的文献求助10
32秒前
Epiphany完成签到 ,获得积分10
34秒前
充电宝应助高山我梦采纳,获得10
35秒前
杨丙鑫发布了新的文献求助10
36秒前
36秒前
37秒前
高分求助中
Practitioner Research at Doctoral Level 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797603
求助须知:如何正确求助?哪些是违规求助? 3342992
关于积分的说明 10314523
捐赠科研通 3059700
什么是DOI,文献DOI怎么找? 1679083
邀请新用户注册赠送积分活动 806322
科研通“疑难数据库(出版商)”最低求助积分说明 763102