Study on the Recognition of Metallurgical Graphs Based on Deep Learning

人工智能 冶金 计算机科学 材料科学
作者
Qichao Zhao,Jinwu Kang,Kai Wu
出处
期刊:Metals [MDPI AG]
卷期号:14 (6): 732-732 被引量:2
标识
DOI:10.3390/met14060732
摘要

Artificial intelligence has been widely applied in image recognition and segmentation, achieving significant results. However, its application in the field of materials science is relatively limited. Metallography is an important technique for characterizing the macroscopic and microscopic structures of metals and alloys. It plays a crucial role in correlating material properties. Therefore, this study investigates the utilization of deep learning techniques for the recognition of metallo-graphic images. This study selected microscopic images of three typical cast irons, including ductile, gray, and white ones, and another alloy, cast aluminum alloy, from the ASM database for recognition investigation. These images were cut and enhanced for training. In addition to coarse classification of material type, fine classification of material type, composition, and the conditions of image acquisition such as microscope, magnification, and etchant was performed. The MobileNetV2 network was adopted as the model for training and prediction, and ImageNet was used as the dataset for pre-training to improve the accuracy. The metallographic images could be classified into 15 categories by the trained neural networks. The accuracy of validation and prediction for fine classification reached 94.44% and 93.87%, respectively. This indicates that neural networks have the potential to identify types of materials with details of microscope, magnification, etchants, etc., supplemental to compositions for metallographic images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
调皮的天真完成签到 ,获得积分10
1秒前
www完成签到,获得积分10
1秒前
xuan完成签到,获得积分10
1秒前
meng完成签到,获得积分10
2秒前
3秒前
sjr完成签到,获得积分10
4秒前
情怀应助小米采纳,获得10
5秒前
6秒前
LiZongze发布了新的文献求助10
6秒前
大个应助礽粥粥采纳,获得50
6秒前
高贵云朵发布了新的文献求助10
6秒前
7秒前
浮游应助tianchen采纳,获得10
8秒前
江子川发布了新的文献求助10
8秒前
AX发布了新的文献求助10
8秒前
8秒前
9秒前
任性的睫毛完成签到,获得积分20
10秒前
Solkatt完成签到 ,获得积分10
10秒前
任成艳完成签到,获得积分10
11秒前
无极微光应助yq采纳,获得20
11秒前
Steve发布了新的文献求助10
12秒前
进取拼搏完成签到,获得积分10
12秒前
琉光完成签到,获得积分10
13秒前
Jimmy完成签到 ,获得积分10
13秒前
拒绝去偏旁完成签到 ,获得积分10
13秒前
十八稀发布了新的文献求助10
13秒前
喜悦诗翠完成签到 ,获得积分10
14秒前
爱学习的小趴菜完成签到,获得积分10
14秒前
16秒前
思源应助pagemao采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
吕奎完成签到,获得积分10
17秒前
科研通AI2S应助泯然采纳,获得10
18秒前
18秒前
18秒前
19秒前
Tayyy发布了新的文献求助10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490336
求助须知:如何正确求助?哪些是违规求助? 4588930
关于积分的说明 14422200
捐赠科研通 4520898
什么是DOI,文献DOI怎么找? 2476923
邀请新用户注册赠送积分活动 1462376
关于科研通互助平台的介绍 1435265