A Remote Sensing Water Information Extraction Method Based on Unsupervised Form Using Probability Function to Describe the Frequency Histogram of NDWI: A Case Study of Qinghai Lake in China

直方图 遥感 萃取(化学) 功能(生物学) 环境科学 模式识别(心理学) 计算机科学 图像(数学) 人工智能 地理 色谱法 生物 化学 进化生物学
作者
Shiqi Liu,Jun Qiu,Fangfang Li
出处
期刊:Water [MDPI AG]
卷期号:16 (12): 1755-1755 被引量:6
标识
DOI:10.3390/w16121755
摘要

With escalating human activities and the substantial emissions of greenhouse gases, global warming intensifies. This phenomenon has led to increased occurrences of various extreme hydrological events, precipitating significant changes in lakes and rivers across the Qinghai Tibet Plateau. Therefore, accurate information extraction about and delineation of water bodies are crucial for lake monitoring. This paper proposes a methodology based on the Normalized Difference Water Index (NDWI) and Gumbel distribution to determine optimal segmentation thresholds. Focusing on Qinghai Lake, this study utilizes multispectral characteristics from the US Landsat satellite for analysis. Comparative assessments with seven alternative methods are conducted to evaluate accuracy. Employing the proposed approach, information about water bodies in Qinghai Lake is extracted over 38 years, from 1986 to 2023, revealing trends in area variation. Analysis indicates a rising trend in Qinghai Lake’s area following a turning point in 2004. To investigate this phenomenon, Pearson correlation analysis of temperature and precipitation over the past 38 years is used and unveils the fact that slight precipitation impacts on area and that there is a positive correlation between temperature and area. In conclusion, this study employs remote sensing data and statistical analysis to comprehensively investigate mechanisms driving changes in Qinghai Lake’s water surface area, providing insights into ecological shifts in lake systems against the backdrop of global warming, thereby offering valuable references for understanding and addressing these changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chensa完成签到,获得积分10
1秒前
健忘的金完成签到 ,获得积分10
1秒前
zhaojiachao完成签到,获得积分10
1秒前
1秒前
1秒前
SciGPT应助xxn采纳,获得10
2秒前
li关闭了li文献求助
2秒前
量子星尘发布了新的文献求助10
2秒前
ccc发布了新的文献求助10
3秒前
七n一发布了新的文献求助10
3秒前
打打应助积极一德采纳,获得10
3秒前
共享精神应助灵76采纳,获得10
3秒前
领导范儿应助熙熙攘攘采纳,获得10
4秒前
4秒前
田様应助科研小白采纳,获得10
4秒前
5秒前
111完成签到,获得积分20
5秒前
vicin完成签到,获得积分10
5秒前
susuna完成签到,获得积分10
5秒前
6秒前
6秒前
wang完成签到,获得积分10
7秒前
淇媛完成签到,获得积分20
7秒前
楠瓜发布了新的文献求助80
8秒前
8秒前
自信千儿完成签到,获得积分10
8秒前
小蘑菇应助不安时光采纳,获得10
8秒前
Rgly发布了新的文献求助10
8秒前
9秒前
李健应助优美的翠梅采纳,获得30
10秒前
灵巧灯泡完成签到,获得积分10
10秒前
Andy完成签到,获得积分10
10秒前
友好的慕儿完成签到,获得积分10
10秒前
11秒前
赘婿应助叶访云采纳,获得10
12秒前
风中谷云完成签到,获得积分10
12秒前
Akim应助DawudShan采纳,获得10
12秒前
谦谦的二毛完成签到,获得积分10
12秒前
秋刀鱼不过期完成签到,获得积分10
12秒前
难过的班完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5708191
求助须知:如何正确求助?哪些是违规求助? 5187368
关于积分的说明 15252886
捐赠科研通 4861233
什么是DOI,文献DOI怎么找? 2609314
邀请新用户注册赠送积分活动 1559937
关于科研通互助平台的介绍 1517716