Deep Learning Method to Predict Wound Healing Progress Based on Collagen Fibers in Wound Tissue

伤口愈合 胶原纤维 生物医学工程 材料科学 医学 外科 解剖
作者
Juan He,Xiaoyan Wang,Long Chen,Yunpeng Cai,Z Wang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2405.05297
摘要

Wound healing is a complex process involving changes in collagen fibers. Accurate monitoring of these changes is crucial for assessing the progress of wound healing and has significant implications for guiding clinical treatment strategies and drug screening. However, traditional quantitative analysis methods focus on spatial characteristics such as collagen fiber alignment and variance, lacking threshold standards to differentiate between different stages of wound healing. To address this issue, we propose an innovative approach based on deep learning to predict the progression of wound healing by analyzing collagen fiber features in histological images of wound tissue. Leveraging the unique learning capabilities of deep learning models, our approach captures the feature variations of collagen fibers in histological images from different categories and classifies them into various stages of wound healing. To overcome the limited availability of histological image data, we employ a transfer learning strategy. Specifically, we fine-tune a VGG16 model pretrained on the ImageNet dataset to adapt it to the classification task of histological images of wounds. Through this process, our model achieves 82% accuracy in classifying six stages of wound healing. Furthermore, to enhance the interpretability of the model, we employ a class activation mapping technique called LayerCAM. LayerCAM reveals the image regions on which the model relies when making predictions, providing transparency to the model's decision-making process. This visualization not only helps us understand how the model identifies and evaluates collagen fiber features but also enhances trust in the model's prediction results. To the best of our knowledge, our proposed model is the first deep learning-based classification model used for predicting wound healing stages.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助醉熏的冷风采纳,获得10
刚刚
1秒前
superhero完成签到,获得积分10
4秒前
4秒前
虚拟的鞋垫完成签到,获得积分10
6秒前
6秒前
小马甲应助濮阳映萱采纳,获得10
7秒前
有一个盆完成签到,获得积分10
8秒前
简单点完成签到 ,获得积分10
9秒前
凉笙墨染完成签到,获得积分10
9秒前
充电宝应助科研狗采纳,获得10
9秒前
有一个盆发布了新的文献求助10
10秒前
赵十一完成签到,获得积分10
11秒前
小苹果完成签到,获得积分10
11秒前
深情笑南发布了新的文献求助10
11秒前
12秒前
皮卡皮卡皮卡丘完成签到,获得积分20
13秒前
啦啦啦啦完成签到,获得积分10
13秒前
排骨炖豆角完成签到 ,获得积分10
13秒前
单薄天宇完成签到,获得积分10
15秒前
16秒前
orixero应助DOCTORLI采纳,获得10
17秒前
17秒前
斯文败类应助粗心的智慧采纳,获得10
20秒前
果ghj完成签到,获得积分10
20秒前
jiao完成签到,获得积分10
21秒前
姚姚发布了新的文献求助30
22秒前
zhou完成签到,获得积分10
25秒前
乐乐应助Bob采纳,获得10
25秒前
星辰大海应助ATOM采纳,获得10
28秒前
28秒前
wangyt完成签到,获得积分10
29秒前
31秒前
DOCTORLI发布了新的文献求助10
33秒前
忧郁隶完成签到,获得积分10
37秒前
bkagyin应助11111采纳,获得10
38秒前
呆萌滑板完成签到 ,获得积分10
39秒前
CAI313完成签到,获得积分10
39秒前
在水一方应助By采纳,获得10
40秒前
<・)))><<应助shutong采纳,获得30
40秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4131641
求助须知:如何正确求助?哪些是违规求助? 3668383
关于积分的说明 11601548
捐赠科研通 3365792
什么是DOI,文献DOI怎么找? 1849213
邀请新用户注册赠送积分活动 912916
科研通“疑难数据库(出版商)”最低求助积分说明 828355