诱导多能干细胞
神经退行性变
干细胞
胚胎干细胞
间充质干细胞
神经科学
疾病
肌萎缩侧索硬化
再生医学
干细胞疗法
医学
细胞疗法
帕金森病
神经干细胞
移植
生物
病理
细胞生物学
内科学
生物化学
基因
作者
J Bindhu,Maya Savira,Ammar A. Razzak Mahmood,Muthu Prasanna
标识
DOI:10.2174/011574888x313112240510160102
摘要
Abstract: Cellular replacement therapy and genetic transfer in injured brains provide new pathways for treating human neurological illnesses. Current progress in the field focuses on the production of neurons and glial cells from many types of stem cells, such as embryonic, induced pluripotent, mesenchymal, and neural stem cells. This has led to a significant increase in research on brain transplantation treatments. Extended neurodegeneration results in the progressive decline of certain neuronal subtypes or whole neuronal cells. An analysis of the progress made in induced pluripotent and mesenchymal stem cells reveals their significant promise in disease modeling, regeneration, and medication screening. The requirement for stem cells in neurodegenerative disease studies has been crucial in recent years. Stem cells provide the potential for replacing impaired neurons, comprehending disease needs modeling, and creating efficient treatments, but they have many challenges in culturing and acceptability to the host immune cells. The need to use their potential in discovering novel therapies for diseases such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis leads to promising therapy. This review examines the function of stem cells in the pathogenesis and treatment of Huntington's disease, Parkinson's disease, Alzheimer's disease, and multiple sclerosis. This review further examines hurdles such as immunological reactions and delivery systems intending to overcome these problems. This article offers a detailed viewpoint on the use of stem cell-based nanotherapies as revolutionary treatments for various neurological illnesses.
科研通智能强力驱动
Strongly Powered by AbleSci AI