土地利用
城市化
土地利用、土地利用的变化和林业
空间规划
碳纤维
地理
环境科学
温室气体
土地利用规划
自然资源经济学
环境保护
环境规划
经济
经济增长
工程类
计算机科学
生态学
复合数
土木工程
生物
算法
作者
Weicheng Gu,Weifeng Qi,Mingyu Zhang
摘要
Abstract The introduction of the carbon peak and carbon‐neutral targets by many countries' central governments has put low‐carbon‐oriented spatial planning at the forefront of discussions. However, few studies have focused on the balance of carbon emission reduction and economic goals in spatial planning, and the governance influence on land use change simulation. This study addresses this gap by conducting an empirical analysis in the rapidly urbanizing area of Hangzhou, China, taking into consideration low‐carbon constraints and economic development demands. Using the stochastic impacts by regression on population, affluence, and technology (STRIPAT) model and linear programming–Markov, we simulate the governance decision‐making process to calculate the optimal land‐use structures under both low‐carbon and baseline scenario, then simulated land use patterns by using artificial‐neural‐network‐based cellular automata (ANN‐CA). The results showed 12.35% and 2.5% growth in urban and forest land, and 9.69% and 6.4% decline in farm and rural land under the low‐carbon scenario. 92.31% of urban land change occur in the downtown districts and suburbs; while 59.77% of farm land change and 95.53% of forest land change occur in the exurban districts. The low‐carbon performance of land use was reflected in carbon storage release, carbon emission capability change, and low‐carbon capability. The most common conversion of land use categories under the low‐carbon scenario was between farm and forest land, and between rural and urban land, which resulted in less carbon storage release and carbon emissions compared with the baseline scenario. Furthermore, under the low‐carbon scenario, the compactness of construction land increased by 2 × 10 −5 , while its fragmentation decreased by 0.0027. This study sheds light on the impact of low‐carbon‐oriented land use planning on urban land expansion, providing empirical evidence for city governments in rapid urbanization areas to improve land use efficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI