Attribute Reduction Based on Fuzzy Distinguishable Pair Metric Considering Redundancy Upper and Lower Bounds

冗余(工程) 基数(数据建模) 数学 公制(单位) 上下界 相互信息 模糊逻辑 还原(数学) 数据挖掘 模糊集 特征选择 计算机科学 模式识别(心理学) 算法 人工智能 几何学 数学分析 操作系统 经济 运营管理
作者
Jianhua Dai,Qi Liu,Changzhong Wang
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (8): 4364-4375 被引量:5
标识
DOI:10.1109/tfuzz.2024.3394709
摘要

Attribute reduction, also called feature selection, serves as a widely adopted approach to reduce data processing complexity by eliminating irrelevant and redundant attributes. It plays a crucial role in addressing the challenges associated with high-dimensional data, optimizing computational resources, and enhancing learning performance. A well-designed attribute reduction method can effectively streamline data analysis processes and improve the overall efficiency and effectiveness of machine learning algorithms. To some extent, the quantity of information contained in an information system can be regarded as the number of distinguishable sample pairs it contains. In this article, the fuzzy distinguishable pair metric is proposed to measure the uncertainty. This metric measures uncertainty by comprehensively considering the number of fuzzy distinguishable pairs and the cardinality of fuzzy similarity relation. Correspondingly, variants of the fuzzy distinguishable pair metric such as joint distinguishable pair metric, conditional distinguishable pair metric, and mutual distinguishable pair metric are constructed. Moreover, the concepts of selected features redundancy upper bound and selected features redundancy lower bound are proposed. These two terms can be flexibly applied to the importance measure to alleviate the problem of over- or under-consideration redundancy. Considering the upper and lower bounds of the selected feature redundancy respectively, two new importance measures are proposed. Based on the previously proposed theory, two attribute reduction algorithms are designed. Finally, comparing the proposed two methods with six effective attribute reduction methods on eighteen datasets with four classifiers, our method achieves good results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
一一发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
LziT发布了新的文献求助10
3秒前
3秒前
麦麦发布了新的文献求助10
3秒前
hunajx完成签到,获得积分10
4秒前
4秒前
铁妹发布了新的文献求助10
6秒前
diyi发布了新的文献求助10
6秒前
科研通AI2S应助刻苦大门采纳,获得10
6秒前
6秒前
7秒前
FashionBoy应助缥缈的天玉采纳,获得10
7秒前
lansing完成签到 ,获得积分10
7秒前
华仔应助butterflycat采纳,获得10
7秒前
紫瑕完成签到,获得积分10
7秒前
耍酷傲菡完成签到,获得积分10
7秒前
俏皮的芝麻完成签到,获得积分10
8秒前
8秒前
8秒前
Shawn发布了新的文献求助10
8秒前
传奇3应助麦麦采纳,获得10
9秒前
jrx发布了新的文献求助10
10秒前
10秒前
10秒前
爱撒娇的朋友完成签到,获得积分10
10秒前
WUWEI发布了新的文献求助10
11秒前
12秒前
丘比特应助豆豆突采纳,获得10
12秒前
13秒前
diyi完成签到,获得积分10
13秒前
14秒前
吴彦祖发布了新的文献求助10
14秒前
田田田田完成签到,获得积分10
14秒前
完美世界应助水123采纳,获得10
14秒前
HH完成签到,获得积分10
14秒前
LziT完成签到,获得积分20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601126
求助须知:如何正确求助?哪些是违规求助? 4686631
关于积分的说明 14845345
捐赠科研通 4679752
什么是DOI,文献DOI怎么找? 2539214
邀请新用户注册赠送积分活动 1506081
关于科研通互助平台的介绍 1471266