A bi-objective deep reinforcement learning approach for low-carbon-emission high-speed railway alignment design

强化学习 包络线(雷达) 计算机科学 投资(军事) 一致性(知识库) 火车 能源消耗 工作(物理) 运输工程 工程类 人工智能 电信 机械工程 政治 地图学 电气工程 法学 地理 雷达 政治学
作者
Qing He,Tianci Gao,Yan Gao,Huailong Li,Paul Schonfeld,Ying Zhu,Qilong Li,Ping Wang
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:147: 104006-104006 被引量:31
标识
DOI:10.1016/j.trc.2022.104006
摘要

Reasonable design and planning of alignments are crucial for both economic investment and the environmental impact of high-speed railway projects. Approaches that can integrate economic investment and environmental factors, thus selecting an economical and eco-friendly railway alignment, are very demanding. To address the above issue, this study focuses on optimizing a railway’s comprehensive investment, including the construction and environmental costs, as well as the railway’s life-cycle carbon emission caused by the production of building materials and the trains’ energy consumption. A novel railway alignment optimization model is formulated based on the multi-objective reinforcement learning (MORL) framework to reduce the railway total cost, accounting for both the construction cost and environmental factors. In the proposed model, a deep deterministic policy gradient (DDPG) algorithm is enhanced with an envelope algorithm that can optimize the convex envelope of multi-objective Q-values to ensure an efficient consistency between the entire space of preferences in a domain and the corresponding optimal policies. Finally, the proposed model is applied to a real-world high-speed railway project. Results show that the MORL model can automatically explore and optimize railway alignment, and produce less expensive and more eco-friendly solutions than manual work while satisfying various alignment constraints.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tao完成签到 ,获得积分10
1秒前
orixero应助Smilingjht采纳,获得30
1秒前
传统学院派完成签到,获得积分10
2秒前
土豆不吐皮完成签到,获得积分10
3秒前
张民鑫完成签到 ,获得积分10
3秒前
静悄悄发布了新的文献求助10
4秒前
生言生语完成签到,获得积分10
4秒前
wj完成签到,获得积分10
5秒前
www发布了新的文献求助30
5秒前
fanqiaqia发布了新的文献求助30
6秒前
洁净的半鬼完成签到,获得积分20
6秒前
情怀应助leslieo3o采纳,获得10
6秒前
大个应助布洛芬缓释胶囊采纳,获得10
7秒前
001完成签到 ,获得积分10
7秒前
严锦强完成签到,获得积分10
8秒前
上官若男应助jorjames采纳,获得10
8秒前
浮浮世世发布了新的文献求助10
8秒前
七七完成签到,获得积分10
9秒前
黄梦娇完成签到,获得积分10
9秒前
sunny完成签到 ,获得积分10
9秒前
10秒前
苏七完成签到,获得积分10
11秒前
烟花应助洁净的半鬼采纳,获得10
11秒前
wsq完成签到,获得积分10
12秒前
12秒前
顺利紫山完成签到,获得积分10
12秒前
cdc完成签到 ,获得积分10
13秒前
13秒前
斑斑完成签到 ,获得积分10
13秒前
kangkang完成签到,获得积分10
13秒前
14秒前
充电宝应助科研小反派采纳,获得10
14秒前
14秒前
changping应助Ann采纳,获得20
14秒前
科研人完成签到 ,获得积分10
15秒前
Ava应助初空月儿采纳,获得10
15秒前
jlk完成签到,获得积分10
15秒前
sylinmm完成签到,获得积分10
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295559
求助须知:如何正确求助?哪些是违规求助? 4445074
关于积分的说明 13835332
捐赠科研通 4329472
什么是DOI,文献DOI怎么找? 2376680
邀请新用户注册赠送积分活动 1371973
关于科研通互助平台的介绍 1337270