控制理论(社会学)
强化学习
伺服机构
线性二次调节器
控制工程
计算机科学
伺服电动机
扭矩
电子速度控制
最优控制
奇异摄动
工程类
数学
控制(管理)
数学优化
人工智能
物理
数学分析
电气工程
热力学
作者
Jianguo Zhao,Chunyu Yang,Weinan Gao,Linna Zhou
标识
DOI:10.1109/tie.2022.3220886
摘要
This article proposes a novel model-free optimal speed tracking control scheme for permanent magnet synchronous motors (PMSMs) through reinforcement learning (RL). To achieve the speed servo control, we formulate the linear quadratic regulator associated with the reduced-order model in the outer loop controller design. Such a model is obtained in terms of singular perturbation theory, which enables the separation of slow and fast time-scale dynamics. Moreover, we develop an off-policy RL algorithm to iteratively approximate the ideal value of solution to the linear quadratic regulator without requiring any knowledge of model parameters of the PMSM and the measurement of the load torque. Both simulation and experimental tests are carried out to justify that the proposed control scheme realizes precision speed tracking performance and shape transient response in the presence of unknown model parameters.
科研通智能强力驱动
Strongly Powered by AbleSci AI