亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

RemixFormer++: A Multi-modal Transformer Model for Precision Skin Tumor Differential Diagnosis with Memory-efficient Attention

计算机科学 元数据 人工智能 编码器 模式识别(心理学) 情态动词 临床实习 模态(人机交互) 医学 操作系统 化学 高分子化学 家庭医学
作者
Jing Xu,Kai Huang,Lianzhen Zhong,Yuan Gao,Kai Sun,Wei Liu,Yanjie Zhou,Wenchao Guo,Yuan Guo,Yuanqiang Zou,Yuping Duan,Le Lü,Yu Wang,Xiang Chen,Shuang Zhao
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3441012
摘要

Diagnosing malignant skin tumors accurately at an early stage can be challenging due to ambiguous and even confusing visual characteristics displayed by various categories of skin tumors. To improve diagnosis precision, all available clinical data from multiple sources, particularly clinical images, dermoscopy images, and medical history, could be considered. Aligning with clinical practice, we propose a novel Transformer model, named Remix-Former++ that consists of a clinical image branch, a dermoscopy image branch, and a metadata branch. Given the unique characteristics inherent in clinical and dermoscopy images, specialized attention strategies are adopted for each type. Clinical images are processed through a top-down architecture, capturing both localized lesion details and global contextual information. Conversely, dermoscopy images undergo a bottom-up processing with two-level hierarchical encoders, designed to pinpoint fine-grained structural and textural features. A dedicated metadata branch seamlessly integrates non-visual information by encoding relevant patient data. Fusing features from three branches substantially boosts disease classification accuracy. RemixFormer++ demonstrates exceptional performance on four single-modality datasets (PAD-UFES-20, ISIC 2017/2018/2019). Compared with the previous best method using a public multi-modal Derm7pt dataset, we achieved an absolute 5.3% increase in averaged F1 and 1.2% in accuracy for the classification of five skin tumors. Furthermore, using a large-scale in-house dataset of 10,351 patients with the twelve most common skin tumors, our method obtained an overall classification accuracy of 92.6%. These promising results, on par or better with the performance of 191 dermatologists through a comprehensive reader study, evidently imply the potential clinical usability of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单于新瑶发布了新的文献求助10
4秒前
27秒前
30秒前
单于新瑶发布了新的文献求助10
34秒前
MchemG举报toto求助涉嫌违规
54秒前
1分钟前
zinnn应助KEEP采纳,获得10
1分钟前
1分钟前
KEEP完成签到,获得积分20
1分钟前
1分钟前
2分钟前
Kvolu29完成签到,获得积分10
2分钟前
老冯完成签到 ,获得积分10
2分钟前
youyou发布了新的文献求助10
2分钟前
2分钟前
浅晨完成签到,获得积分10
2分钟前
Lignin应助忧心的寄松采纳,获得10
2分钟前
努力努力再努力完成签到,获得积分10
3分钟前
3分钟前
3分钟前
李浩完成签到 ,获得积分10
3分钟前
龚文亮完成签到,获得积分10
3分钟前
3分钟前
3分钟前
Otter发布了新的文献求助10
3分钟前
天下无马完成签到 ,获得积分10
4分钟前
Echopotter完成签到,获得积分10
4分钟前
Sandy发布了新的文献求助10
4分钟前
4分钟前
武玉坤完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
5分钟前
852应助youyou采纳,获得30
5分钟前
5分钟前
Arctic完成签到 ,获得积分10
6分钟前
fxh发布了新的文献求助10
6分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Encyclopedia of Mathematical Physics 2nd Edition 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3924372
求助须知:如何正确求助?哪些是违规求助? 3469104
关于积分的说明 10955100
捐赠科研通 3198461
什么是DOI,文献DOI怎么找? 1767207
邀请新用户注册赠送积分活动 856696
科研通“疑难数据库(出版商)”最低求助积分说明 795597