Automated Comprehensive CT Assessment of the Risk of Diabetes and Associated Cardiometabolic Conditions

医学 糖尿病 风险评估 内科学 内分泌学 计算机科学 计算机安全
作者
Yoosoo Chang,Soon Ho Yoon,Ria Kwon,Jeonggyu Kang,Young Hwan Kim,Jong-Min Kim,Han-Jae Chung,JunHyeok Choi,Hyun-Suk Jung,Ga-Young Lim,Jiin Ahn,Sarah H. Wild,Christopher D. Byrne,Seungho Ryu,Shannyn Wolfe
出处
期刊:Radiology [Radiological Society of North America]
卷期号:312 (2) 被引量:8
标识
DOI:10.1148/radiol.233410
摘要

Background CT performed for various clinical indications has the potential to predict cardiometabolic diseases. However, the predictive ability of individual CT parameters remains underexplored. Purpose To evaluate the ability of automated CT-derived markers to predict diabetes and associated cardiometabolic comorbidities. Materials and Methods This retrospective study included Korean adults (age ≥ 25 years) who underwent health screening with fluorine 18 fluorodeoxyglucose PET/CT between January 2012 and December 2015. Fully automated CT markers included visceral and subcutaneous fat, muscle, bone density, liver fat, all normalized to height (in meters squared), and aortic calcification. Predictive performance was assessed with area under the receiver operating characteristic curve (AUC) and Harrell C-index in the cross-sectional and survival analyses, respectively. Results The cross-sectional and cohort analyses included 32166 (mean age, 45 years ± 6 [SD], 28833 men) and 27 298 adults (mean age, 44 years ± 5 [SD], 24 820 men), respectively. Diabetes prevalence and incidence was 6% at baseline and 9% during the 7.3-year median follow-up, respectively. Visceral fat index showed the highest predictive performance for prevalent and incident diabetes, yielding AUC of 0.70 (95% CI: 0.68, 0.71) for men and 0.82 (95% CI: 0.78, 0.85) for women and C-index of 0.68 (95% CI: 0.67, 0.69) for men and 0.82 (95% CI: 0.77, 0.86) for women, respectively. Combining visceral fat, muscle area, liver fat fraction, and aortic calcification improved predictive performance, yielding C-indexes of 0.69 (95% CI: 0.68, 0.71) for men and 0.83 (95% CI: 0.78, 0.87) for women. The AUC for visceral fat index in identifying metabolic syndrome was 0.81 (95% CI: 0.80, 0.81) for men and 0.90 (95% CI: 0.88, 0.91) for women. CT-derived markers also identified US-diagnosed fatty liver, coronary artery calcium scores greater than 100, sarcopenia, and osteoporosis, with AUCs ranging from 0.80 to 0.95. Conclusion Automated multiorgan CT analysis identified individuals at high risk of diabetes and other cardiometabolic comorbidities. © RSNA, 2024
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
椰子狗完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
zmy完成签到,获得积分10
2秒前
完美世界应助Amorphous采纳,获得10
2秒前
wild给wild的求助进行了留言
2秒前
哒哒完成签到,获得积分10
3秒前
3秒前
3秒前
吕子尚发布了新的文献求助10
3秒前
flystone发布了新的文献求助10
4秒前
可爱的函函应助善恶成采纳,获得10
4秒前
茉籽完成签到,获得积分10
4秒前
可爱的函函应助haha采纳,获得10
5秒前
wanci应助好好采纳,获得10
5秒前
jike完成签到 ,获得积分10
5秒前
5秒前
5秒前
chenlixin完成签到,获得积分10
5秒前
panpan111发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
不倦应助崔伟采纳,获得10
7秒前
浮游应助浪漫主义诗人采纳,获得10
7秒前
一独白完成签到,获得积分10
7秒前
搜集达人应助怕黑的樱采纳,获得10
7秒前
我本人lrx关注了科研通微信公众号
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
波比不菜完成签到,获得积分10
9秒前
9秒前
9秒前
一独白发布了新的文献求助10
9秒前
Gin发布了新的文献求助10
10秒前
duoduo完成签到,获得积分20
10秒前
zc19891130发布了新的文献求助50
10秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4697977
求助须知:如何正确求助?哪些是违规求助? 4067266
关于积分的说明 12574668
捐赠科研通 3766799
什么是DOI,文献DOI怎么找? 2080239
邀请新用户注册赠送积分活动 1108320
科研通“疑难数据库(出版商)”最低求助积分说明 986664