Hyper-YOLO: When Visual Object Detection Meets Hypergraph Computation

超图 计算机科学 计算 对象(语法) 人工智能 目标检测 计算机视觉 计算机图形学(图像) 模式识别(心理学) 数学 程序设计语言 离散数学
作者
Yifan Feng,Huang Jian-gang,Shaoyi Du,Shihui Ying,Jun‐Hai Yong,Yipeng Li,Guiguang Ding,Rongrong Ji,Yue Gao
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2408.04804
摘要

We introduce Hyper-YOLO, a new object detection method that integrates hypergraph computations to capture the complex high-order correlations among visual features. Traditional YOLO models, while powerful, have limitations in their neck designs that restrict the integration of cross-level features and the exploitation of high-order feature interrelationships. To address these challenges, we propose the Hypergraph Computation Empowered Semantic Collecting and Scattering (HGC-SCS) framework, which transposes visual feature maps into a semantic space and constructs a hypergraph for high-order message propagation. This enables the model to acquire both semantic and structural information, advancing beyond conventional feature-focused learning. Hyper-YOLO incorporates the proposed Mixed Aggregation Network (MANet) in its backbone for enhanced feature extraction and introduces the Hypergraph-Based Cross-Level and Cross-Position Representation Network (HyperC2Net) in its neck. HyperC2Net operates across five scales and breaks free from traditional grid structures, allowing for sophisticated high-order interactions across levels and positions. This synergy of components positions Hyper-YOLO as a state-of-the-art architecture in various scale models, as evidenced by its superior performance on the COCO dataset. Specifically, Hyper-YOLO-N significantly outperforms the advanced YOLOv8-N and YOLOv9-T with 12\% $\text{AP}^{val}$ and 9\% $\text{AP}^{val}$ improvements. The source codes are at ttps://github.com/iMoonLab/Hyper-YOLO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
curtain发布了新的文献求助10
3秒前
科研通AI5应助sk夏冰采纳,获得30
3秒前
3秒前
传奇3应助yue采纳,获得10
4秒前
4秒前
Akim应助GOODYUE采纳,获得10
5秒前
大模型应助JSJ采纳,获得10
6秒前
上官若男应助YP采纳,获得10
7秒前
7秒前
8秒前
humorlife完成签到,获得积分10
8秒前
刚刚好发布了新的文献求助10
8秒前
糖葫芦发布了新的文献求助10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
顺心浩阑应助科研通管家采纳,获得20
9秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
和谐的冬莲完成签到 ,获得积分10
10秒前
我不爱池鱼应助77采纳,获得10
10秒前
11秒前
lulull完成签到,获得积分10
11秒前
红芍完成签到,获得积分10
11秒前
12秒前
xiyin完成签到,获得积分10
12秒前
莫名发布了新的文献求助10
13秒前
492754592发布了新的文献求助10
13秒前
13秒前
沉鱼完成签到,获得积分10
14秒前
14秒前
脑洞疼应助yqwang采纳,获得10
14秒前
江知之完成签到 ,获得积分0
15秒前
大男完成签到,获得积分10
16秒前
xiyin发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
18秒前
顾矜应助酷炫小馒头采纳,获得10
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789298
求助须知:如何正确求助?哪些是违规求助? 3334334
关于积分的说明 10269281
捐赠科研通 3050758
什么是DOI,文献DOI怎么找? 1674155
邀请新用户注册赠送积分活动 802507
科研通“疑难数据库(出版商)”最低求助积分说明 760693