Physics-informed quantum neural network for solving forward and inverse problems of partial differential equations

物理 人工神经网络 偏微分方程 反问题 应用数学 反向 量子 微分方程 统计物理学 量子力学 数学分析 人工智能 几何学 数学 计算机科学
作者
Yang Xiao,Liming Yang,C. Shu,S. C. Chew,Boo Cheong Khoo,Yongdong Cui,Y. Y. Liu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (9) 被引量:8
标识
DOI:10.1063/5.0226232
摘要

Recently, physics-informed neural networks (PINNs) have aroused an upsurge in the field of scientific computing including solving partial differential equations (PDEs), which convert the task of solving PDEs into an optimization challenge by adopting governing equations and definite conditions or observation data as loss functions. Essentially, the underlying logic of PINNs is based on the universal approximation and differentiability properties of classical neural networks (NNs). Recent research has revealed that quantum neural networks (QNNs), known as parameterized quantum circuits, also exhibit universal approximation and differentiability properties. This observation naturally suggests the application of PINNs to QNNs. In this work, we introduce a physics-informed quantum neural network (PI-QNN) by employing the QNN as the function approximator for solving forward and inverse problems of PDEs. The performance of the proposed PI-QNN is evaluated by various forward and inverse PDE problems. Numerical results indicate that PI-QNN demonstrates superior convergence over PINN when solving PDEs with exact solutions that are strongly correlated with trigonometric functions. Moreover, its accuracy surpasses that of PINN by two to three orders of magnitude, while requiring fewer trainable parameters. However, the computational time of PI-QNN exceeds that of PINN due to its operation on classical computers. This limitation may improve with the advent of commercial quantum computers in the future. Furthermore, we briefly investigate the impact of network architecture on PI-QNN performance by examining two different QNN architectures. The results suggest that increasing the number of trainable network layers can enhance the expressiveness of PI-QNN. However, an excessive number of data encoding layers significantly increases computational time, rendering the marginal gains in performance insufficient to compensate for the shortcomings in computational efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助wei采纳,获得10
刚刚
颜子尧完成签到 ,获得积分10
1秒前
刘美美完成签到,获得积分10
1秒前
李奚完成签到,获得积分10
2秒前
2秒前
幸运鸡蛋灌饼完成签到 ,获得积分10
2秒前
孙天川完成签到,获得积分10
3秒前
田超完成签到,获得积分10
3秒前
yznfly应助硕心采纳,获得80
3秒前
小贝完成签到,获得积分10
3秒前
liz完成签到,获得积分10
4秒前
4秒前
5秒前
寻梦完成签到,获得积分10
5秒前
5秒前
dt完成签到,获得积分10
5秒前
5秒前
还行吧完成签到 ,获得积分10
6秒前
充电宝应助WJT采纳,获得10
6秒前
6秒前
丁丁慧发布了新的文献求助10
6秒前
7秒前
abc完成签到,获得积分10
7秒前
hdjfhfrf完成签到,获得积分10
7秒前
伶俐的采枫完成签到,获得积分20
7秒前
feiCheung发布了新的文献求助10
9秒前
dy1994完成签到,获得积分10
9秒前
Shell完成签到,获得积分10
9秒前
111完成签到 ,获得积分10
9秒前
颖火虫发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
xiaofeizhu发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
tt给tt的求助进行了留言
11秒前
MouLi完成签到,获得积分10
11秒前
zlz发布了新的文献求助10
13秒前
sanqi完成签到,获得积分10
14秒前
健康小宋完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5707428
求助须知:如何正确求助?哪些是违规求助? 5183492
关于积分的说明 15249685
捐赠科研通 4860718
什么是DOI,文献DOI怎么找? 2608800
邀请新用户注册赠送积分活动 1559713
关于科研通互助平台的介绍 1517504