Physics-informed quantum neural network for solving forward and inverse problems of partial differential equations

物理 人工神经网络 偏微分方程 反问题 应用数学 反向 量子 微分方程 统计物理学 量子力学 数学分析 人工智能 几何学 数学 计算机科学
作者
Yang Xiao,Liming Yang,C. Shu,S. C. Chew,Boo Cheong Khoo,Yongdong Cui,Y. Y. Liu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (9) 被引量:4
标识
DOI:10.1063/5.0226232
摘要

Recently, physics-informed neural networks (PINNs) have aroused an upsurge in the field of scientific computing including solving partial differential equations (PDEs), which convert the task of solving PDEs into an optimization challenge by adopting governing equations and definite conditions or observation data as loss functions. Essentially, the underlying logic of PINNs is based on the universal approximation and differentiability properties of classical neural networks (NNs). Recent research has revealed that quantum neural networks (QNNs), known as parameterized quantum circuits, also exhibit universal approximation and differentiability properties. This observation naturally suggests the application of PINNs to QNNs. In this work, we introduce a physics-informed quantum neural network (PI-QNN) by employing the QNN as the function approximator for solving forward and inverse problems of PDEs. The performance of the proposed PI-QNN is evaluated by various forward and inverse PDE problems. Numerical results indicate that PI-QNN demonstrates superior convergence over PINN when solving PDEs with exact solutions that are strongly correlated with trigonometric functions. Moreover, its accuracy surpasses that of PINN by two to three orders of magnitude, while requiring fewer trainable parameters. However, the computational time of PI-QNN exceeds that of PINN due to its operation on classical computers. This limitation may improve with the advent of commercial quantum computers in the future. Furthermore, we briefly investigate the impact of network architecture on PI-QNN performance by examining two different QNN architectures. The results suggest that increasing the number of trainable network layers can enhance the expressiveness of PI-QNN. However, an excessive number of data encoding layers significantly increases computational time, rendering the marginal gains in performance insufficient to compensate for the shortcomings in computational efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
bd发布了新的文献求助10
2秒前
快乐的雨竹完成签到,获得积分10
2秒前
娜娜子发布了新的文献求助30
4秒前
Owen应助benben采纳,获得30
6秒前
刘佳恬发布了新的文献求助10
6秒前
汉堡包应助33采纳,获得10
7秒前
烂漫的乐菱应助minmi采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
悦耳的雨灵完成签到 ,获得积分20
12秒前
12秒前
13秒前
德芙纵向丝滑完成签到,获得积分10
13秒前
典雅长颈鹿完成签到,获得积分10
13秒前
13秒前
14秒前
zxy发布了新的文献求助10
16秒前
WilsonT发布了新的文献求助10
18秒前
18秒前
充电宝应助Analchem采纳,获得10
18秒前
123发布了新的文献求助10
19秒前
qian72133完成签到,获得积分10
19秒前
万能图书馆应助木子采纳,获得10
21秒前
可爱的函函应助你奈我何采纳,获得10
23秒前
24秒前
25秒前
25秒前
517完成签到 ,获得积分10
25秒前
刻苦的阁应助闪电侠采纳,获得10
26秒前
kugaidatou发布了新的文献求助10
27秒前
科研通AI5应助zxy采纳,获得10
27秒前
搜集达人应助曹慧采纳,获得10
27秒前
斯文败类应助JING采纳,获得10
27秒前
在水一方应助小孙采纳,获得10
28秒前
量子星尘发布了新的文献求助10
28秒前
29秒前
明亮娩发布了新的文献求助10
29秒前
共享精神应助黄花采纳,获得10
29秒前
30秒前
zz完成签到,获得积分10
30秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4209178
求助须知:如何正确求助?哪些是违规求助? 3743222
关于积分的说明 11782802
捐赠科研通 3412909
什么是DOI,文献DOI怎么找? 1872920
邀请新用户注册赠送积分活动 927504
科研通“疑难数据库(出版商)”最低求助积分说明 837094