Denoising and Augmented Negative Sampling for Collaborative Filtering

计算机科学 采样(信号处理) 对比度(视觉) 噪音(视频) 降噪 人工智能 光学(聚焦) 过程(计算) 机器学习 边界(拓扑) 数据挖掘 滤波器(信号处理) 模式识别(心理学) 图像(数学) 数学 计算机视觉 数学分析 物理 光学 操作系统
作者
Yuhan Zhao,Rui Chen,Riwei Lai,Qilong Han,Hongtao Song,Li Chen
标识
DOI:10.1145/3690656
摘要

Negative sampling plays a crucial role in implicit-feedback-based collaborative filtering, where it leverages massive unlabeled data to generate negative signals for guiding supervised learning. The current state-of-the-art approaches focus on utilizing hard negative samples that contain more information to establish a better decision boundary. To strike a balance between efficiency and effectiveness, most existing methods adopt a two-pass approach: in the first pass, a fixed number of unobserved items are sampled using a simple static distribution, while, in the second pass, a more sophisticated negative sampling strategy is employed to select the final negative items. However, selecting negative samples solely from the original items in a dataset is inherently restricted due to the limited available choices, and thus may not be able to effectively contrast positive samples. In this paper, we empirically validate this observation through meticulously designed experiments and identify three major limitations of existing solutions: ambiguous trap, information discrimination, and false negative samples. Our response to such limitations is to introduce “denoised” and “augmented” negative samples that may not exist in the original dataset. This direction renders a few substantial technical challenges. First, constructing augmented negative samples may introduce excessive noise that eventually distorts the decision boundary. Second, the scarcity of supervision signals hampers the denoising process. To this end, we introduce a novel generic denoising and augmented negative sampling (DANS) paradigm and provide a concrete instantiation. First, we disentangle the hard and easy factors of negative items. Then, we regulate the augmentation of easy factors by carefully considering the direction and magnitude. Next, we propose a reverse attention mechanism to learn a user’s negative preference, which allows us to perform a dimension-level denoising procedure on hard factors. Finally, we design an advanced negative sampling strategy to identify the final negative samples, taking into account both the score function used in existing methods and a novel metric called synthesization gain. Through extensive experiments on real-world datasets, we demonstrate that our method substantially outperforms state-of-the-art baselines. Our code is publicly available at https://github.com/Asa9aoTK/ANS-Recbole.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
brainwoshing关注了科研通微信公众号
刚刚
刚刚
llaky发布了新的文献求助10
1秒前
李霞客发布了新的文献求助10
1秒前
chenjunji完成签到,获得积分10
2秒前
2秒前
badyoungboy完成签到,获得积分10
3秒前
星辰完成签到,获得积分10
3秒前
老实和尚完成签到,获得积分10
3秒前
GAN发布了新的文献求助10
3秒前
4秒前
王羲之发布了新的文献求助10
5秒前
以义以完成签到,获得积分10
5秒前
Sherlock发布了新的文献求助10
5秒前
枫莘梓发布了新的文献求助30
5秒前
6秒前
6秒前
7秒前
天天快乐应助明天你好采纳,获得10
7秒前
小毛线发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
弱于一般人类完成签到,获得积分10
9秒前
9秒前
猪猪hero发布了新的文献求助10
9秒前
10秒前
10秒前
有魅力老头完成签到,获得积分10
11秒前
wanci应助vtfangfangfang采纳,获得10
11秒前
11秒前
11秒前
Max完成签到,获得积分10
12秒前
JiaqiDijon发布了新的文献求助10
12秒前
丰富的小甜瓜完成签到,获得积分10
12秒前
Ariel发布了新的文献求助10
12秒前
花生发布了新的文献求助10
12秒前
anna1992发布了新的文献求助10
13秒前
流沙发布了新的文献求助10
13秒前
书芹发布了新的文献求助10
13秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
ACSM's guidelines for exercise testing and prescription, 12 ed 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3896407
求助须知:如何正确求助?哪些是违规求助? 3440258
关于积分的说明 10816649
捐赠科研通 3165237
什么是DOI,文献DOI怎么找? 1748644
邀请新用户注册赠送积分活动 844842
科研通“疑难数据库(出版商)”最低求助积分说明 788286