YOLOv8-CDD:An Improved Concrete Defect Detection Method Combined CNN with Transformer

变压器 计算机科学 材料科学 电气工程 工程类 电压
作者
C. Wang,Bo Chen,Yonglong Li,Haoran Wang,Liguo Tan,Yunan Zhang,Hua Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 015409-015409 被引量:2
标识
DOI:10.1088/1361-6501/ad85f5
摘要

Abstract Concrete defect detection is a critical task to ensure the safe and stable operation of concrete infrastructure. In order to effectively solve the problems of low efficiency, high cost and poor performance of existing methods, a high-precision concrete defect detection method YOLOv8-CDD (Concrete Defect Detection) combining convolutional neural network and transformer is proposed in this paper. Firstly, based on the features with a large span of concrete defect features, a bot-transformer module that can effectively extract the global information of defect features is proposed to improve the network’s ability to extract global features. Secondly, in order to further strengthen the interaction between defect feature channels and spatial information, a convolutional triplet attention module is introduced into the feature enhancement network to effectively integrate the information of different dimensions of defect features and improve the model detection accuracy. Additionally, in order to enhance the learning of samples with different degrees of difficulty, the introduction of Focaler-CIoU instead of the original boundary regression loss function can optimize the model training process. Finally, the dataset was collected and organized in concrete scenarios from bridge towers, dams, and tunnel corridors, and our method achieved 0.898 average precision, 0.893 average recall, 0.031 average FPR, 0.895 average F1 score, 0.929 mAP50, and 0.731 mAP50:95 on the dataset. The experimental results show that the proposed method achieves the best performance in concrete defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
激情的寄灵完成签到,获得积分20
1秒前
寂寞的从波完成签到 ,获得积分20
1秒前
2秒前
666完成签到,获得积分10
2秒前
2秒前
Issac01发布了新的文献求助10
4秒前
4秒前
柯学佳发布了新的文献求助10
5秒前
朱晓宇完成签到,获得积分10
8秒前
8秒前
科研兄完成签到,获得积分10
8秒前
小蓉儿发布了新的文献求助10
9秒前
feilu完成签到,获得积分10
9秒前
加油干发布了新的文献求助10
9秒前
9秒前
我是一棵梭梭树关注了科研通微信公众号
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
齐济完成签到 ,获得积分10
12秒前
13秒前
HYW发布了新的文献求助30
14秒前
小雅妹发布了新的文献求助10
14秒前
16秒前
淡定绮发布了新的文献求助10
17秒前
高山流水完成签到,获得积分10
19秒前
刘忠发布了新的文献求助30
19秒前
20秒前
上官若男应助久桃采纳,获得10
20秒前
领导范儿应助wwss采纳,获得10
21秒前
SciGPT应助柯学佳采纳,获得10
22秒前
HYW完成签到,获得积分10
23秒前
24秒前
25秒前
乐乐应助小凯采纳,获得10
26秒前
淡定绮完成签到,获得积分10
29秒前
彭于晏应助雨愈采纳,获得10
29秒前
深情安青应助云舒采纳,获得10
30秒前
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4325371
求助须知:如何正确求助?哪些是违规求助? 3840332
关于积分的说明 12003849
捐赠科研通 3481171
什么是DOI,文献DOI怎么找? 1909433
邀请新用户注册赠送积分活动 954485
科研通“疑难数据库(出版商)”最低求助积分说明 855729