材料科学
肿胀 的
甲基丙烯酸酯
聚乙烯醇
自愈水凝胶
水下
硫酸
纳米技术
数码产品
化学工程
复合材料
高分子化学
聚合物
化学
海洋学
聚合
物理化学
冶金
工程类
地质学
作者
Jiayuan Ren,Guoqi Chen,Hailong Yang,Jingxia Zheng,Shengnan Li,Canjie Zhu,Hua Yang,Jun Fu,Hua Yang,Jun Fu
标识
DOI:10.1002/adma.202412162
摘要
Abstract Hydrogel‐based electronic devices in aquatic environments have sparked widespread research interest. Nevertheless, the challenge of developing hydrogel electronics underwater has not been profoundly surmounted because of the fragility and swelling of hydrogels in aquatic environments. In this work, a zwitterionic double network hydrogel comprised of polyvinyl alcohol (PVA), poly(sulfobetaine methacrylate) (PSBMA), and sulfuric acid (H 2 SO 4 ) demonstrates super‐tough and non‐swelling performance. The Hofmeister effect of H 2 SO 4 and PSBMA induces the PVA chains to form numerous nanocrystalline domains, which serve as the primary physical crosslinking points and provide effective energy dissipation. H 2 SO 4 induces a strong salting‐out effect to facilitate PVA crystallization and the formation of a dense and stable network structure that inhibits swelling. The resulting hydrogel exhibits an ultra‐high toughness of 4.61 MJ m −3 , non‐swelling, and long‐term stability for up to a month in pure water and seawater. Based on this, a hydrogel‐based seawater strain sensor has been developed to monitor the underwater movements of marine animal models. Reliable and stable sensing performance ensures real‐time collection of underwater motion signals, despite the impacts of water flow and the interference of ions. This study provides a facile approach to designing super‐tough and non‐swelling hydrogels and further expands the application of underwater electronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI