Transmission Line Defect Target-Detection Method Based on GR-YOLOv8

计算机科学 计算 故障检测与隔离 算法 跳跃式监视 卷积(计算机科学) 冗余(工程) 人工智能 像素 实时计算 人工神经网络 操作系统 执行机构
作者
Shuai Hao,Kang Ren,Jiahao Li,Xu Ma
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (21): 6838-6838 被引量:1
标识
DOI:10.3390/s24216838
摘要

In view of the low levels of speed and precision associated with fault detection in transmission lines using traditional algorithms due to resource constraints, a transmission line fault target-detection method for YOLOv8 (You Only Look Once version 8) based on the Rep (Representational Pyramid) Visual Transformer and incorporating an ultra-lightweight module is proposed. First, the YOLOv8 detection network was built. In order to address the needs of feature redundancy and high levels of network computation, the Rep Visual Transformer module was introduced in the Neck part to integrate the pixel information associated with the entire image through its multi-head self-attention and enable the model to learn more global image features, thereby improving the computational speed of the model; then, a lightweight GSConv (Grouped and Separated Convolution, a combination of grouped convolution and separated convolution) convolution module was added to the Backbone and Neck to share computing resources among channels and reduce computing time and memory consumption, by which the computational cost and detection performance of the detection network were balanced, while the model remained lightweight and maintained its high precision. Secondly, the loss function Wise-IoU (Intelligent IOU) was introduced as the Bounding-Box Regression (BBR) loss function to optimize the predicted bounding boxes in these grid cells and shift them closer to the real target location, which reduced the harmful gradients caused by low-quality examples and further improved the detection precision of the algorithm. Finally, the algorithm was verified using a data set of 3500 images compiled by a power-supply inspection department over the past four years. The experimental results show that, compared with the seven classic and improved algorithms, the recall rate and average precision of the proposed algorithm were improved by 0.058 and 0.053, respectively, compared with the original YOLOv8 detection network; the floating-point operations per second decreased by 2.3; and the picture detection speed was increased to 114.9 FPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TakIc发布了新的文献求助10
1秒前
天天快乐应助Zzz采纳,获得10
2秒前
RY发布了新的文献求助10
2秒前
2秒前
3秒前
乐乐应助Limin采纳,获得30
4秒前
和谐夏彤完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
烟花应助yaoqiangshi采纳,获得10
6秒前
7秒前
了解发布了新的文献求助10
10秒前
领导范儿应助与可采纳,获得10
11秒前
11秒前
11秒前
11秒前
capvirgo发布了新的文献求助10
12秒前
大方依玉完成签到 ,获得积分10
13秒前
wr0112发布了新的文献求助30
14秒前
15秒前
深情安青应助wen采纳,获得10
15秒前
打打应助叶绿体机智采纳,获得10
15秒前
15秒前
Zzz完成签到,获得积分10
15秒前
深情安青应助朴素爆米花采纳,获得10
16秒前
16秒前
于你发布了新的文献求助20
16秒前
Owen应助圆圆采纳,获得10
17秒前
香蕉觅云应助ppmm采纳,获得10
17秒前
17秒前
jiemy完成签到,获得积分10
17秒前
18秒前
19秒前
20秒前
Zzz发布了新的文献求助10
21秒前
于是完成签到,获得积分10
21秒前
Jasper应助坦率的枕头采纳,获得10
21秒前
21秒前
22秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 666
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Social Epistemology: The Niches for Knowledge and Ignorance 500
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4251962
求助须知:如何正确求助?哪些是违规求助? 3785233
关于积分的说明 11880670
捐赠科研通 3436303
什么是DOI,文献DOI怎么找? 1885789
邀请新用户注册赠送积分活动 937319
科研通“疑难数据库(出版商)”最低求助积分说明 843118