Fatigue Strength Improvement of Laser-Directed Energy Deposition 316L Stainless Steel with In Situ Ultrasonic Rolling by Preliminary Investigation

等轴晶 材料科学 合金 超声波传感器 冶金 疲劳极限 多孔性 粒度 沉积(地质) 残余应力 原位 复合材料 生物 物理 沉积物 古生物学 气象学 声学
作者
Guan Liu,Yigui Su,Xuyu Pi,Defu Liu,Y.C. Lin
出处
期刊:Materials [MDPI AG]
卷期号:17 (15): 3693-3693 被引量:14
标识
DOI:10.3390/ma17153693
摘要

In this study, to improve the fatigue strength of the LDED (laser-directed energy deposition) 316L stainless steel, an in situ ultrasonic rolling technology is developed to assist the laser-directed energy deposition process (LDED-UR). The microstructural characteristics and fatigue behavior are comprehensively discussed. The results show that the average size of pores of the LDED-UR alloy is about 10.2 μm, which is much smaller than that of the LDED alloy (34.1 μm). Meanwhile, the density of the LDED alloy is also enhanced from 98.26% to 99.27% via the in situ ultrasonic rolling. With the application of the in situ ultrasonic rolling, the grains are transformed into fully equiaxed grains, and their average grain size is greatly reduced from 84.56 μm to 26.93 μm. The fatigue limit of the LDED-UR alloy is increased by 29% from 210 MPa (LDED alloy) to 270 MPa, which can be ascribed to the decreased porosity and the fine grains. In particular, the crack initiation site of the LDED alloy is located at the surfaces, while it is nucleated from the sub-surface for the LDED-UR alloy. This is mainly attributed to the compression residual stress induced by the in situ ultrasonic rolling. This research offers a valuable understanding of the failure mechanisms in additively manufactured metals, guiding the development of effective strategies to improve their fatigue threshold under severe operating conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘛哩嘛哩轰完成签到,获得积分10
3秒前
4秒前
leilei完成签到,获得积分10
5秒前
小周完成签到,获得积分10
6秒前
8秒前
liu发布了新的文献求助10
8秒前
SciGPT应助芳菲依旧采纳,获得150
9秒前
日天气完成签到,获得积分10
9秒前
9秒前
123566完成签到,获得积分10
9秒前
WYN发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
日天气发布了新的文献求助10
13秒前
HHY完成签到,获得积分10
14秒前
清脆大门完成签到,获得积分10
15秒前
15秒前
Liuxinyiliu发布了新的文献求助10
16秒前
秋凛发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
THJJ发布了新的文献求助10
17秒前
18秒前
18秒前
yangching完成签到,获得积分10
19秒前
十年小橘完成签到,获得积分10
21秒前
SciGPT应助会发光的小叶子采纳,获得10
21秒前
潮流季发布了新的文献求助10
21秒前
香蕉觅云应助奶桃七七采纳,获得10
21秒前
小铭发布了新的文献求助10
23秒前
内向月饼完成签到,获得积分10
23秒前
伶俐如冰完成签到,获得积分10
25秒前
默默随阴完成签到 ,获得积分10
25秒前
26秒前
27秒前
RC_Wang应助lhlhl采纳,获得10
27秒前
量子星尘发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785393
求助须知:如何正确求助?哪些是违规求助? 5687580
关于积分的说明 15467396
捐赠科研通 4914484
什么是DOI,文献DOI怎么找? 2645216
邀请新用户注册赠送积分活动 1593054
关于科研通互助平台的介绍 1547382