Exploiting the synergy of SARIMA and XGBoost for spatiotemporal earthquake time series forecasting

系列(地层学) 时间序列 地质学 气象学 计算机科学 地震学 遥感 地理 机器学习 古生物学
作者
Arush Kaushal,Ashok Kumar Gupta,Vivek Kumar Sehgal
出处
期刊:Earth Surface Processes and Landforms [Wiley]
标识
DOI:10.1002/esp.5992
摘要

Abstract Earthquakes are vibrations that occur on the surface of earth, generating fires, ground shaking, tsunamis, landslides and cracks. These incidents can cause severe damage and loss of life. Accurate earthquake forecasts are critical for anticipating and mitigating these hazards, which can avoid damage to buildings and infrastructure and save lives. To address the challenges given by earthquakes probabilistic nature, this paper presents a hybrid SARIMA–XGBoost approach to earthquake magnitude prediction. The suggested technique consists of a two‐step process: an exploration phase that uses exploratory data analysis, which includes descriptive statistics and data visualisation, and a prediction phase that focusses on forecasting future earthquakes. Using a large significant earthquake dataset spanning 1965–2023, the study intends to gain insights and lessons for more effective earthquake prediction methods. Further, in a comparison analysis, the results of SARIMA‐XGBoost model are compared to those of traditional ARIMA and SARIMA models. The results highlight the superior performance of the hybrid SARIMA–XGBoost model, showcasing a mean absolute error (MAE) of 0.038, a mean squared error (MSE) of 0.0040, and a root mean squared error (RMSE) of 0.068. These metrics collectively underscore the model's enhanced accuracy in forecasting earthquake magnitudes. The notably low values of MAE, MSE and RMSE indicate that our hybrid approach significantly improves prediction accuracy compared to alternative models. By integrating SARIMA's time series (TS) analysis with XGBoost's machine learning (ML) capabilities, the hybrid model reduces forecasting errors more effectively, demonstrating its clear advantage in precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zyt发布了新的文献求助10
1秒前
阿白完成签到 ,获得积分10
1秒前
pcr163应助xzn1123采纳,获得100
2秒前
2秒前
FashionBoy应助辛勤大米采纳,获得10
2秒前
Hello应助hitori采纳,获得10
3秒前
领导范儿应助杨榆藤采纳,获得10
3秒前
科研通AI5应助一一采纳,获得10
3秒前
大模型应助芸苔AA采纳,获得10
4秒前
桃子完成签到,获得积分20
4秒前
4秒前
老友关注了科研通微信公众号
4秒前
塔克拉玛干000完成签到,获得积分10
5秒前
红柚发布了新的文献求助10
6秒前
6秒前
大个应助五十四采纳,获得10
7秒前
7秒前
悦耳的芷荷完成签到,获得积分20
8秒前
无辜的大雁完成签到,获得积分10
8秒前
8秒前
烟花应助Rui采纳,获得10
8秒前
Sharon完成签到,获得积分10
9秒前
thl完成签到,获得积分10
9秒前
9秒前
10秒前
小西发布了新的文献求助10
10秒前
跳跃的岂愈完成签到,获得积分10
12秒前
13秒前
聪明马里奥完成签到,获得积分10
13秒前
14秒前
NexusExplorer应助don采纳,获得10
14秒前
Marjorie完成签到,获得积分10
15秒前
丹丹丹发布了新的文献求助10
15秒前
科研通AI5应助ffang采纳,获得10
15秒前
16秒前
16秒前
吉吉发布了新的文献求助10
16秒前
16秒前
路十三发布了新的文献求助10
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794261
求助须知:如何正确求助?哪些是违规求助? 3339153
关于积分的说明 10294350
捐赠科研通 3055765
什么是DOI,文献DOI怎么找? 1676792
邀请新用户注册赠送积分活动 804745
科研通“疑难数据库(出版商)”最低求助积分说明 762098