Probabilistic Attention for Sequential Recommendation

概率逻辑 计算机科学 人工智能
作者
Y. B. Liu,Christian Walder,Lexing Xie,Yiqun Liu
标识
DOI:10.1145/3637528.3671733
摘要

Sequential Recommendation (SR) navigates users' dynamic preferences through modeling their historical interactions. The incorporation of the popular Transformer framework, which captures long relationships through pairwise dot products, has notably benefited SR. However, prevailing research in this domain faces three significant challenges: (i) Existing studies directly adopt the primary component of Transformer (i.e., the self-attention mechanism), without a clear explanation or tailored definition for its specific role in SR; (ii) The predominant focus on pairwise computations overlooks the global context or relative prevalence of item pairs within the overall sequence; (iii) Transformer primarily pursues relevance-dominated relationships, neglecting another essential objective in recommendation, i.e., diversity. In response, this work introduces a fresh perspective to elucidate the attention mechanism in SR. Here, attention is defined as dependency interactions among items, quantitatively determined under a global probabilistic model by observing the probabilities of corresponding item subsets. This viewpoint offers a precise and context-specific definition of attention, leading to the design of a distinctive attention mechanism tailored for SR. Specifically, we transmute the well-formulated global, repulsive interactions in Determinantal Point Processes (DPPs) to effectively model dependency interactions. Guided by the repulsive interactions, a theoretically and practically feasible DPP kernel is designed, enabling our attention mechanism to directly consider category/topic distribution for enhancing diversity. Consequently, the Probabilistic Attention mechanism (PAtt) for sequential recommendation is developed. Experimental results demonstrate the excellent scalability and adaptability of our attention mechanism, which significantly improves recommendation performance in terms of both relevance and diversity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助lwbgm采纳,获得30
刚刚
jinggaier完成签到 ,获得积分10
1秒前
7777发布了新的文献求助10
1秒前
CipherSage应助芝麻糊采纳,获得10
2秒前
2秒前
罗先生发布了新的文献求助10
3秒前
3秒前
我是老大应助正直凛采纳,获得10
3秒前
xvping完成签到,获得积分10
3秒前
4秒前
4秒前
6秒前
6秒前
8秒前
9秒前
zho发布了新的文献求助10
9秒前
9秒前
可爱的函函应助常泽洋122采纳,获得10
9秒前
9秒前
10秒前
吴圳发布了新的文献求助10
10秒前
小虎同学完成签到,获得积分10
10秒前
10秒前
lilili发布了新的文献求助10
10秒前
11秒前
12秒前
无限知能完成签到,获得积分20
12秒前
12秒前
12秒前
13秒前
萌兴完成签到,获得积分10
13秒前
13秒前
ty1erzz发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
APRIL_SKY发布了新的文献求助10
14秒前
LLLLLL完成签到,获得积分20
14秒前
AN发布了新的文献求助10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4063773
求助须知:如何正确求助?哪些是违规求助? 3602233
关于积分的说明 11440458
捐赠科研通 3325347
什么是DOI,文献DOI怎么找? 1828068
邀请新用户注册赠送积分活动 898518
科研通“疑难数据库(出版商)”最低求助积分说明 819103