控制理论(社会学)
反推
非线性系统
执行机构
跟踪误差
观察员(物理)
滤波器(信号处理)
断层(地质)
李雅普诺夫函数
计算机科学
控制器(灌溉)
容错
补偿(心理学)
控制工程
工程类
控制(管理)
自适应控制
人工智能
心理学
分布式计算
物理
量子力学
地震学
精神分析
农学
计算机视觉
生物
地质学
作者
Yuan Lu,Bo Meng,Jin Xuan
标识
DOI:10.1177/01423312241267048
摘要
For the uncertain nonlinear systems with prescribed performance, the command filter–based fixed-time fault estimation and compensation control strategy is investigated in this study. The radial basis function neural networks (RBFNNs) are utilized to approximate the uncertain nonlinear terms. Simultaneously, the composite disturbance observer is established to quickly estimate external disturbances, approximation errors, and additive actuation fault. Moreover, the actuation effectiveness of the actuator is quickly estimated online by constructing the cubic absolute-value Lyapunov function. Therefore, based on the fast estimation of the actuator fault parameters, the fixed-time fault-tolerant control method is proposed by adopting the command filter backstepping technology and prescribed performance function, which can compensate for the adverse effect of actuator fault and keep the tracking error stable in a short time interval. Finally, a simulation example is given to prove the performance of the designed controller.
科研通智能强力驱动
Strongly Powered by AbleSci AI