Research on signal denoising algorithm based on ICEEMDAN eddy current detection

降噪 信号(编程语言) 涡流 计算机科学 算法 电流(流体) 物理 人工智能 量子力学 热力学 程序设计语言
作者
Qi Liu,Zhifan Zhao,Huaishu Hou,Jinhao Li,Shuaijun Xia
出处
期刊:Journal of Instrumentation [Institute of Physics]
卷期号:19 (09): P09026-P09026
标识
DOI:10.1088/1748-0221/19/09/p09026
摘要

Abstract This study addresses the challenges of non-stationarity and significant background noise interference in eddy current detection signals by proposing a noise reduction method based on Improved Complete Ensemble Empirical Mode Decomposition with Adapted Noise (ICEEMDAN). The process commences with the signal being decomposed using Improved Complete Ensemble Empirical Mode Decomposition with Adapted Noise into a finite number of Intrinsic Mode Functions (IMFs). Each Intrinsic Mode Function is then evaluated for the presence of high-frequency noise using a Power Spectral Density (PSD) analysis. The high-frequency noise present in the Intrinsic Mode Functions is then reduced using Normalized Least Mean Squares (NLMS) before being reconstructed with the remaining Intrinsic Mode Functions. Subsequently, the reconstructed signals are subjected to another round of decomposition using Improved Complete Ensemble Empirical Mode Decomposition with Adapted Noise. The Pearson Product Moment Correlation Coefficient (PPMCC) is utilised to calculate the correlation between the Intrinsic Mode Functions within each layer, retaining those with a strong correlation to further attenuate noise. Ultimately, the local maxima judgement method selectively amplifies defect signals by assessing changes in peak and valley degrees, thereby improving the signal-to-noise ratio of the eddy current detection signal. The experimental results demonstrate that, in comparison to the use of only the conventional Improved Complete Ensemble Empirical Mode Decomposition with Adapted Noise and Normalized Least Mean Squares denoising methods, the proposed method increases the Signal-to-Noise Ratio (SNR) by 1.08 dB and 2.31 dB, respectively, and decreases the Mean Square Error (MSE) by 106.9 and 223.9, respectively. The false alarm rate for stainless steel welded tubes with defects is 1.4%, while the false alarm rate for stainless steel welded tubes without defects is 0.4%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小粽子完成签到,获得积分10
刚刚
大湖小舟完成签到,获得积分10
1秒前
不见高山发布了新的文献求助10
1秒前
1秒前
愚公完成签到 ,获得积分10
2秒前
2秒前
笨笨米卡完成签到,获得积分10
3秒前
Qi_Jinyang发布了新的文献求助10
4秒前
酷波er应助结实灵采纳,获得10
4秒前
marcg4应助cc采纳,获得10
4秒前
roger发布了新的文献求助10
5秒前
5秒前
小强x完成签到,获得积分10
6秒前
白斯特发布了新的文献求助10
7秒前
7秒前
烟花应助太叔十三采纳,获得30
7秒前
8秒前
8秒前
8秒前
hg08发布了新的文献求助10
9秒前
鸣笛应助Arit采纳,获得10
9秒前
10秒前
快飞飞完成签到 ,获得积分10
10秒前
结实智宸完成签到,获得积分10
10秒前
medlive2020发布了新的文献求助10
10秒前
zrw发布了新的文献求助10
13秒前
hx0841发布了新的文献求助10
13秒前
13秒前
不见高山完成签到,获得积分10
13秒前
14秒前
诚心若男发布了新的文献求助10
15秒前
filory完成签到,获得积分20
15秒前
淡定成风完成签到,获得积分10
16秒前
圆球球完成签到 ,获得积分10
17秒前
风趣凝海完成签到,获得积分10
17秒前
小郝发布了新的文献求助10
18秒前
18秒前
姚姚完成签到,获得积分10
18秒前
18秒前
hg08完成签到,获得积分10
19秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4165503
求助须知:如何正确求助?哪些是违规求助? 3701078
关于积分的说明 11685252
捐赠科研通 3389916
什么是DOI,文献DOI怎么找? 1859120
邀请新用户注册赠送积分活动 919563
科研通“疑难数据库(出版商)”最低求助积分说明 832156