Neural Network Architectures and Magnetic Hysteresis: Overview and Comparisons

磁滞 人工神经网络 计算机科学 人工智能 物理 凝聚态物理
作者
Silvia Licciardi,Guido Ala,Elisa Francomano,Fabio Viola,Michele Lo Giudice,Alessandro Salvini,F. Sargeni,Vittorio Bertolini,Andrea Di Schino,Antonio Faba
出处
期刊:Mathematics [MDPI AG]
卷期号:12 (21): 3363-3363 被引量:3
标识
DOI:10.3390/math12213363
摘要

The development of innovative materials, based on the modern technologies and processes, is the key factor to improve the energetic sustainability and reduce the environmental impact of electrical equipment. In particular, the modeling of magnetic hysteresis is crucial for the design and construction of electrical and electronic devices. In recent years, additive manufacturing techniques are playing a decisive role in the project and production of magnetic elements and circuits for applications in various engineering fields. To this aim, the use of the deep learning paradigm, integrated with the most common models of the magnetic hysteresis process, has become increasingly present in recent years. The intent of this paper is to provide the features of a wide range of deep learning tools to be applied to magnetic hysteresis context and beyond. The possibilities of building neural networks in hybrid form are innumerable, so it is not plausible to illustrate them in a single paper, but in the present context, several neural networks used in the scientific literature, integrated with various hysteretic mathematical models, including the well-known Preisach model, are compared. It is shown that this hybrid approach not only improves the modeling of hysteresis by significantly reducing computational time and efforts, but also offers new perspectives for the analysis and prediction of the behavior of magnetic materials, with significant implications for the production of advanced devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾村发布了新的文献求助10
刚刚
夹夹发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
李嘉宁完成签到,获得积分10
3秒前
爆米花应助Janmy采纳,获得10
3秒前
北瑾完成签到,获得积分20
3秒前
结算完成签到,获得积分20
3秒前
李健应助lucky采纳,获得10
4秒前
彭佳乐发布了新的文献求助10
4秒前
我是老大应助zzz采纳,获得10
4秒前
liu完成签到 ,获得积分10
4秒前
汉堡包应助宁灭龙采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
烟花应助老四采纳,获得10
5秒前
简单火龙果完成签到,获得积分10
5秒前
6秒前
6秒前
大模型应助复杂刺猬采纳,获得10
6秒前
YAN发布了新的文献求助20
7秒前
打打应助李狗蛋采纳,获得10
7秒前
闪闪羊完成签到,获得积分10
7秒前
风起完成签到,获得积分10
7秒前
小二郎应助vivi采纳,获得10
7秒前
7秒前
8秒前
yy湫发布了新的文献求助20
8秒前
uggvuit发布了新的文献求助10
8秒前
北瑾发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
酷酷三问完成签到,获得积分10
9秒前
黎缘完成签到,获得积分10
9秒前
脑洞疼应助复杂的如萱采纳,获得10
9秒前
10秒前
玉玉完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546309
求助须知:如何正确求助?哪些是违规求助? 4632193
关于积分的说明 14625447
捐赠科研通 4573861
什么是DOI,文献DOI怎么找? 2507851
邀请新用户注册赠送积分活动 1484503
关于科研通互助平台的介绍 1455714