Autofrettage of high-pressure components made of ultra-high-strength-steel

自增强 材料科学 残余应力 结构工程 疲劳极限 断裂力学 复合材料 循环应力 压力容器 压力(语言学) 工作(物理) 应力集中 断裂(地质) 有限元法 残余强度 裂缝闭合 工程类 机械工程 哲学 语言学
作者
Carl Fällgren,Thomas Beier,Michael Vormwald,Andreas Kleemann
出处
期刊:Procedia structural integrity [Elsevier]
卷期号:37: 948-955 被引量:4
标识
DOI:10.1016/j.prostr.2022.02.030
摘要

This work is primarily concerned with the fatigue life of high-pressure bearing components with intersecting holes, typically used in Diesel engine fuel injection systems. The investigation focuses on specimens with orthogonally intersecting holes that have undergone the process of Autofrettage (single mechanical overload), which is typically used to extend the fatigue life of components loaded by cyclic internal pressure. The Autofrettage process induces advantageous, life-time prolonging residual compressive stresses in the highly stressed areas of the components. The resulting residual stress distribution thus influences the fatigue failure and especially the crack propagation behaviour of the components. In previous works, fracture mechanics based approaches were used to describe the crack propagation behaviour for autofrettaged specimens made of the quenched and tempered steel 42CrMo4. Results showed that crack arrest has to be taken into account when calculating fatigue lives of autofrettaged specimens as the endurance limit is otherwise underestimated. As efforts are made to increase the injection pressures of fuel injection systems, in this work, the benefit of using ultra high strength steel for the application described is investigated. In order to achieve reliable results, material testing with samples made of the ultra-high-strength steel W360 was performed. The resulting test data were used to describe the initial loading and cyclic loading behaviour of the material with a suitable material model. Finite element analysis was then performed to simulate the Autofrettage process and subsequent cyclic loading. Based on the simulation results, possible crack initiation was determined. For predicted crack initiation, the simulated residual stress distribution was used to investigate the crack propagation behaviour with fracture mechanics based approaches of different complexity in order to identify possible crack arrest or crack propagation. Calculated results were compared to experimental test data from component-like specimens. The comparison to the test results showed an overestimation of the predicted fatigue lives. The modelled material behaviour and consequently the residual stress distribution from the simulation models was identified as the decisive factor for the deviation. Still, the comparison showed that the fracture mechanics based approaches are capable of describing the crack arrest and propagation behaviour reliably. Further investigation regarding the modelling of the material behaviour with focus on the Autofrettage process is still required.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助科研通管家采纳,获得10
刚刚
三余完成签到,获得积分10
刚刚
今后应助科研通管家采纳,获得10
刚刚
刚刚
十一应助科研通管家采纳,获得10
刚刚
刚刚
大龙哥886应助科研通管家采纳,获得10
刚刚
stand应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
十一应助科研通管家采纳,获得10
刚刚
蓝天应助科研通管家采纳,获得10
刚刚
打打应助清爽的如波采纳,获得10
1秒前
文献求助发布了新的文献求助10
1秒前
研友_VZG7GZ应助xd采纳,获得10
1秒前
1秒前
2秒前
量子星尘发布了新的文献求助30
3秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
搞对发布了新的文献求助20
5秒前
林泽玉发布了新的文献求助10
6秒前
6秒前
marcg4完成签到,获得积分10
9秒前
9秒前
一页墨城发布了新的文献求助10
10秒前
anhao完成签到,获得积分10
10秒前
XUXU发布了新的文献求助10
11秒前
hzs发布了新的文献求助30
11秒前
顾矜应助1101001采纳,获得50
11秒前
12秒前
sherry123完成签到,获得积分20
12秒前
12秒前
DERLIN发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
领导范儿应助蒸盐粥采纳,获得10
15秒前
123应助崔鹤然采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729568
求助须知:如何正确求助?哪些是违规求助? 5319394
关于积分的说明 15317016
捐赠科研通 4876593
什么是DOI,文献DOI怎么找? 2619440
邀请新用户注册赠送积分活动 1568984
关于科研通互助平台的介绍 1525535