Real-time Tracking and Classification of Tumor and Nontumor Tissue in Upper Gastrointestinal Cancers Using Diffuse Reflectance Spectroscopy for Resection Margin Assessment

医学 癌症 腺癌 切除缘 食管癌 放射科 病理 外科 内科学 切除术
作者
Scarlet Nazarian,Ioannis Gkouzionis,Michal Kawka,Marta Jamroziak,Josephine Lloyd,Ara Darzi,Nisha Patel,Daniel S. Elson,Christopher J. Peters
出处
期刊:JAMA Surgery [American Medical Association]
卷期号:157 (11): e223899-e223899 被引量:14
标识
DOI:10.1001/jamasurg.2022.3899
摘要

Cancers of the upper gastrointestinal tract remain a major contributor to the global cancer burden. The accurate mapping of tumor margins is of particular importance for curative cancer resection and improvement in overall survival. Current mapping techniques preclude a full resection margin assessment in real time.To evaluate whether diffuse reflectance spectroscopy (DRS) on gastric and esophageal cancer specimens can differentiate tissue types and provide real-time feedback to the operator.This was a prospective ex vivo validation study. Patients undergoing esophageal or gastric cancer resection were prospectively recruited into the study between July 2020 and July 2021 at Hammersmith Hospital in London, United Kingdom. Tissue specimens were included for patients undergoing elective surgery for either esophageal carcinoma (adenocarcinoma or squamous cell carcinoma) or gastric adenocarcinoma.A handheld DRS probe and tracking system was used on freshly resected ex vivo tissue to obtain spectral data. Binary classification, following histopathological validation, was performed using 4 supervised machine learning classifiers.Data were divided into training and testing sets using a stratified 5-fold cross-validation method. Machine learning classifiers were evaluated in terms of sensitivity, specificity, overall accuracy, and the area under the curve.Of 34 included patients, 22 (65%) were male, and the median (range) age was 68 (35-89) years. A total of 14 097 mean spectra for normal and cancerous tissue were collected. For normal vs cancer tissue, the machine learning classifier achieved a mean (SD) overall diagnostic accuracy of 93.86% (0.66) for stomach tissue and 96.22% (0.50) for esophageal tissue and achieved a mean (SD) sensitivity and specificity of 91.31% (1.5) and 95.13% (0.8), respectively, for stomach tissue and of 94.60% (0.9) and 97.28% (0.6) for esophagus tissue. Real-time tissue tracking and classification was achieved and presented live on screen.This study provides ex vivo validation of the DRS technology for real-time differentiation of gastric and esophageal cancer from healthy tissue using machine learning with high accuracy. As such, it is a step toward the development of a real-time in vivo tumor mapping tool for esophageal and gastric cancers that can aid decision-making of resection margins intraoperatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
南宫问天发布了新的文献求助10
3秒前
橙子完成签到,获得积分10
3秒前
4秒前
共享精神应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
我是老大应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
7秒前
科目三应助灵梦柠檬酸采纳,获得10
8秒前
赵文悦完成签到,获得积分10
8秒前
8秒前
小马甲应助橙子采纳,获得10
10秒前
10秒前
古往今来应助失眠的莫英采纳,获得20
10秒前
water应助dd采纳,获得10
11秒前
11秒前
12秒前
13秒前
Ava应助DJ采纳,获得10
13秒前
15秒前
15秒前
water应助iMoney采纳,获得10
15秒前
15秒前
Owen应助杨123采纳,获得10
17秒前
上官若男应助饱满的醉山采纳,获得10
17秒前
18秒前
小二郎应助Ru采纳,获得10
19秒前
vvvv发布了新的文献求助30
19秒前
20秒前
baifeicao完成签到,获得积分10
21秒前
21秒前
失眠的莫英完成签到,获得积分10
22秒前
22秒前
gk完成签到,获得积分10
22秒前
西贝发布了新的文献求助10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Composite Predicates in English 300
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3982367
求助须知:如何正确求助?哪些是违规求助? 3525972
关于积分的说明 11229581
捐赠科研通 3263807
什么是DOI,文献DOI怎么找? 1801681
邀请新用户注册赠送积分活动 879994
科研通“疑难数据库(出版商)”最低求助积分说明 807767