Prospects and Challenges of AI and Neural Network Algorithms in MEMS Microcantilever Biosensors

生物传感器 微电子机械系统 自动化 人工神经网络 计算机科学 纳米技术 灵敏度(控制系统) 数码产品 工程类 人工智能 材料科学 机械工程 电气工程 电子工程
作者
Jingjing Wang,Baozheng Xu,Libo Shi,Long Zhu,Xi Wang
出处
期刊:Processes [Multidisciplinary Digital Publishing Institute]
卷期号:10 (8): 1658-1658 被引量:5
标识
DOI:10.3390/pr10081658
摘要

This paper focuses on the use of AI in various MEMS (Micro-Electro-Mechanical System) biosensor types. Al increases the potential of Micro-Electro-Mechanical System biosensors and opens up new opportunities for automation, consumer electronics, industrial manufacturing, defense, medical equipment, etc. Micro-Electro-Mechanical System microcantilever biosensors are currently making their way into our daily lives and playing a significant role in the advancement of social technology. Micro-Electro-Mechanical System biosensors with microcantilever structures have a number of benefits over conventional biosensors, including small size, high sensitivity, mass production, simple arraying, integration, etc. These advantages have made them one of the development avenues for high-sensitivity sensors. The next generation of sensors will exhibit an intelligent development trajectory and aid people in interacting with other objects in a variety of scenario applications as a result of the active development of artificial intelligence (AI) and neural networks. As a result, this paper examines the fundamentals of the neural algorithm and goes into great detail on the fundamentals and uses of the principal component analysis approach. A neural algorithm application in Micro-Electro-Mechanical System microcantilever biosensors is anticipated through the associated application of the principal com-ponent analysis approach. Our investigation has more scientific study value, because there are currently no favorable reports on the market regarding the use of AI with Micro-Electro-Mechanical System microcantilever sensors. Focusing on AI and neural networks, this paper introduces Micro-Electro-Mechanical System biosensors using artificial intelligence, which greatly promotes the development of next-generation intelligent sensing systems, and the potential applications and prospects of neural networks in the field of microcantilever biosensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研狗发布了新的文献求助10
2秒前
3秒前
Winnie完成签到,获得积分10
3秒前
4秒前
kksk发布了新的文献求助10
4秒前
四辈发布了新的文献求助10
4秒前
4秒前
6秒前
杨丙鑫发布了新的文献求助10
7秒前
李喜喜发布了新的文献求助10
7秒前
8秒前
SYLH应助高兴的紫文采纳,获得10
9秒前
1fser1完成签到,获得积分10
9秒前
DAVE应助东风采纳,获得10
10秒前
李富贵完成签到,获得积分20
10秒前
123完成签到,获得积分10
10秒前
10秒前
喜悦的怀梦关注了科研通微信公众号
11秒前
11秒前
11秒前
朴素羊完成签到 ,获得积分10
13秒前
13秒前
可cabd完成签到,获得积分10
13秒前
14秒前
14秒前
ding应助李富贵采纳,获得10
15秒前
狐妖发布了新的文献求助10
16秒前
hang完成签到,获得积分10
16秒前
17秒前
18秒前
拼搏语薇完成签到,获得积分10
19秒前
动漫大师发布了新的文献求助10
19秒前
天天快乐应助杨丙鑫采纳,获得10
20秒前
科研通AI5应助gg采纳,获得30
22秒前
23秒前
科研通AI5应助狐妖采纳,获得10
23秒前
24秒前
科研通AI5应助舒适惜寒采纳,获得10
24秒前
rhh发布了新的文献求助10
24秒前
26秒前
高分求助中
Practitioner Research at Doctoral Level 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797638
求助须知:如何正确求助?哪些是违规求助? 3343077
关于积分的说明 10314637
捐赠科研通 3059803
什么是DOI,文献DOI怎么找? 1679098
邀请新用户注册赠送积分活动 806343
科研通“疑难数据库(出版商)”最低求助积分说明 763102