Overviews of dielectric energy storage materials and methods to improve energy storage density

储能 材料科学 电容器 电介质 计算机数据存储 超级电容器 功率密度 电气工程 光电子学 功率(物理) 计算机科学 电容 工程类 电压 电极 化学 物理 物理化学 量子力学 操作系统
作者
Chunli Diao,Hao Wang,Boying Wang,Yiqian He,Yabin Hou,Haiwu Zheng
出处
期刊:Journal of Materials Science: Materials in Electronics [Springer Nature]
卷期号:33 (27): 21199-21222 被引量:10
标识
DOI:10.1007/s10854-022-08830-5
摘要

Due to high power density, fast charge/discharge speed, and high reliability, dielectric capacitors are widely used in pulsed power systems and power electronic systems. However, compared with other energy storage devices such as batteries and supercapacitors, the energy storage density of dielectric capacitors is low, which results in the huge system volume when applied in pulse systems. Therefore, to meet the needs of device miniaturization and integration, reducing the system volume and increasing the energy storage density have become very key research hot spots in the dielectric energy storage fields. In this paper, we first introduce the research background of dielectric energy storage capacitors and the evaluation parameters of energy storage performance. Then, the research status of ceramics, thin films, organic polymers, and organic–inorganic nanocomposites for energy storage is summarized. Next, the methods of improving the energy storage density of dielectric capacitors are concluded. For ceramic blocks and films, methods, such as element doping, multi-phase solid solution/coexistence structure, “core–shell” structure/laminated structure, and other interface adjustments, are effective to increase the energy storage density. While for organic–inorganic nanocomposites, the energy storage performance can be optimized by the surface modification and distribution of fillers, and multi-layer structure design. Finally, the future development tendency of the energy storage materials is prospected to consolidate the research foundation of dielectric energy storage and provide certain guidance value for their practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
闪闪的夜阑完成签到,获得积分10
1秒前
Crush完成签到,获得积分10
1秒前
淳于采蓝发布了新的文献求助10
1秒前
江泽应助小埋采纳,获得10
1秒前
小心科研发布了新的文献求助10
2秒前
KONG完成签到,获得积分10
2秒前
往返完成签到,获得积分10
3秒前
4秒前
8R60d8应助gege采纳,获得10
5秒前
Billy完成签到,获得积分10
5秒前
5秒前
噼里啪啦发布了新的文献求助10
6秒前
7秒前
丶Jane应助zhu采纳,获得10
7秒前
老实的道罡完成签到 ,获得积分10
8秒前
闪闪若山关注了科研通微信公众号
8秒前
华仔应助调皮的蓝天采纳,获得10
8秒前
sherry完成签到 ,获得积分10
8秒前
王逗逗完成签到,获得积分10
9秒前
zdu完成签到,获得积分10
10秒前
风景的谷建芬完成签到,获得积分10
10秒前
12秒前
liuliu完成签到 ,获得积分10
12秒前
王逗逗发布了新的文献求助10
12秒前
孙铭泽完成签到,获得积分10
14秒前
沉静傲易完成签到,获得积分10
15秒前
满意的凝荷完成签到 ,获得积分10
15秒前
醉熏的以云完成签到 ,获得积分10
16秒前
传奇3应助爱吃猫的鱼采纳,获得10
16秒前
铃兰完成签到,获得积分10
16秒前
坚强的广山应助世当珍惜采纳,获得10
17秒前
Ethanyoyo0917完成签到,获得积分10
18秒前
bkagyin应助夏夜晚风采纳,获得10
18秒前
kkfly完成签到,获得积分10
18秒前
yutustd完成签到,获得积分10
19秒前
ableyy完成签到,获得积分10
20秒前
大气建辉完成签到,获得积分10
21秒前
pip1412完成签到 ,获得积分20
21秒前
21秒前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 500
Two-sample Mendelian randomization analysis reveals causal relationships between blood lipids and venous thromboembolism 500
Chinese-English Translation Lexicon Version 3.0 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 440
薩提亞模式團體方案對青年情侶輔導效果之研究 400
3X3 Basketball: Everything You Need to Know 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2387721
求助须知:如何正确求助?哪些是违规求助? 2094117
关于积分的说明 5271017
捐赠科研通 1820857
什么是DOI,文献DOI怎么找? 908306
版权声明 559289
科研通“疑难数据库(出版商)”最低求助积分说明 485217