Combination of Hematoma Volume and Perihematoma Radiomics Analysis on Baseline CT Scan Predicts the Growth of Perihematomal Edema

医学 列线图 接收机工作特性 逻辑回归 无线电技术 队列 放射科 核医学 内科学
作者
Jia Wang,Xing Xiong,Jinzhao Zou,Jianxiong Fu,Yili Yin,Jing Ye
出处
期刊:Clinical neuroradiology [Springer Science+Business Media]
卷期号:33 (1): 199-209 被引量:3
标识
DOI:10.1007/s00062-022-01201-x
摘要

PurposeThe aim is to explore the potential value of CT-based radiomics in predicting perihematomal edema (PHE) volumes after acute intracerebral hemorrhage (ICH) from admission to 24 h.MethodsA total of 231 patients newly diagnosed with acute ICH at two institutes were analyzed retrospectively. The patients were randomly divided into training (N = 117) and internal validation cohort (N = 45) from institute 1 with a ratio of 7:3. According to radiomics features extracted from baseline CT, the radiomics signatures were constructed. Multiple logistic regression analysis was used for clinical radiological factors and then the nomogram model was generated to predict the extent of PHE according to the optimal radiomics signature and the clinical radiological factors. The receiver operating characteristic (ROC) curve was used to evaluate the discrimination performance. The calibration curve and Hosmer-Lemeshow test were used to evaluate the consistency between the predicted and actual probability. The support vector regression (SVR) model was constructed to predict the overall value of follow-up PHE. The performance of the models was evaluated on the internal and independent validation cohorts.ResultsThe perihematoma 5 mm radiomics signature (AUC: 0.875) showed good ability to discriminate the small relative PHE(rPHE) from large rPHE volumes, comparing to intrahematoma radiomics signature (AUC: 0.711) or perihematoma 10 mm radiomics signature (AUC: 0.692) on the training cohort. The AUC of the combined nomogram model was 0.922 for the training cohort, 0.945 and 0.902 for the internal and independent validation cohorts, respectively. The calibration curves and Hosmer–Lemeshow test of the nomogram model suggested that the predictive performance and actual outcome were in favorable agreement. The SVR model also predicted the overall value of follow-up rPHE (root mean squared error, 0.60 and 0.45; Pearson correlation coefficient, 0.73 and 0.68; P < 0.001).ConclusionAmong patients with acute ICH, the established nomogram and SVR model with favorable performance can offer a noninvasive tool for the prediction of PHE after ICH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助yyy采纳,获得10
2秒前
2秒前
美合完成签到 ,获得积分10
3秒前
4秒前
小张完成签到 ,获得积分10
6秒前
LS发布了新的文献求助10
7秒前
7秒前
笨鸟先飞发布了新的文献求助10
9秒前
bc应助淡然白安采纳,获得10
9秒前
9秒前
haipronl发布了新的文献求助10
12秒前
小龙发布了新的文献求助10
13秒前
卢雅妮发布了新的文献求助10
13秒前
orixero应助小草采纳,获得10
14秒前
89757发布了新的文献求助10
14秒前
15秒前
16秒前
明镜发布了新的文献求助10
18秒前
20秒前
21秒前
yyy发布了新的文献求助10
21秒前
22秒前
Ab完成签到,获得积分10
22秒前
小草完成签到,获得积分10
24秒前
香蕉觅云应助CYRFAIRY采纳,获得10
24秒前
25秒前
LV发布了新的文献求助10
26秒前
小草发布了新的文献求助10
26秒前
CipherSage应助默默的无敌采纳,获得30
28秒前
28秒前
31秒前
Chloe发布了新的文献求助10
31秒前
小二郎应助QingMRI采纳,获得10
32秒前
33秒前
34秒前
小夏发布了新的文献求助10
35秒前
36秒前
CYRFAIRY发布了新的文献求助10
37秒前
英姑应助哎呀采纳,获得10
39秒前
gww完成签到,获得积分10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781804
求助须知:如何正确求助?哪些是违规求助? 3327400
关于积分的说明 10230835
捐赠科研通 3042271
什么是DOI,文献DOI怎么找? 1669937
邀请新用户注册赠送积分活动 799434
科研通“疑难数据库(出版商)”最低求助积分说明 758804