Tailoring 3D-printed high internal phase emulsion-rice starch gels: Role of amylose in rheology and bioactive stability

流变学 直链淀粉 乳状液 淀粉 化学工程 材料科学 保健品 化学 复合材料 食品科学 有机化学 工程类
作者
Luyao Zheng,Dong Li,Lijun Wang,Yong Wang
出处
期刊:Carbohydrate Polymers [Elsevier BV]
卷期号:331: 121891-121891 被引量:15
标识
DOI:10.1016/j.carbpol.2024.121891
摘要

This study investigated the properties of 3D-printed high internal phase emulsion (HIPE)-rice starch gels, specially tailored for personalized nutrition by co-encapsulating resveratrol and β-carotene. We examined the influence of amylose content on various parameters, including functional groups, linear and nonlinear rheology, printed precision and microstructural stability. Additionally, we assessed the protective efficacy and release in vitro digestion of these gels on the encapsulated bioactive components. Compared to HIPE, HIPE-starch gels differently impacted by amylose content in starches. Low-level amylose weakened the network structure, attributed to amylose mainly responsible for gel formation and weak hydrogen bond interaction between the surface-active molecules and amylose due to gelatinized starch granules rupturing the protein network. Oppositely, high-level amylose led to denser, more gel-like structures with enhanced mechanical strength and reversible deformation resistance, making them suitable for 3D printing. Furthermore, 3D-printed gels with high-level amylose demonstrated well-defined structures, smooth surfaces, stable printing and less dimension deviation. They were also regarded as effective entrapping and delivery systems for resveratrol and β-carotene, protecting them against degradation from environment and damage under the erosion of digestive fluid. Overall, this research offers a straightforward strategy for creating reduced-fat HIPE gels that serve as the carrier for personalized nutraceutical foods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒适的梦玉完成签到,获得积分10
刚刚
1秒前
lobster完成签到,获得积分10
1秒前
少吃顿饭并不难完成签到 ,获得积分10
1秒前
2秒前
小天完成签到,获得积分10
3秒前
帮帮完成签到,获得积分10
3秒前
4秒前
超级玛丽完成签到 ,获得积分10
4秒前
4秒前
进击的研狗完成签到 ,获得积分10
4秒前
。?。完成签到 ,获得积分10
5秒前
sugar发布了新的文献求助10
7秒前
8秒前
Cherry完成签到 ,获得积分10
8秒前
小机灵鬼完成签到,获得积分20
8秒前
饱满烙完成签到 ,获得积分10
9秒前
欢呼的傲旋完成签到,获得积分10
11秒前
俞绯完成签到,获得积分10
11秒前
小机灵鬼发布了新的文献求助10
11秒前
13秒前
阳光的梦寒完成签到,获得积分10
14秒前
夜已深完成签到,获得积分10
17秒前
kinase完成签到 ,获得积分10
18秒前
19秒前
Diego完成签到,获得积分10
20秒前
21秒前
Xenia完成签到 ,获得积分10
23秒前
CodeCraft应助小机灵鬼采纳,获得10
24秒前
qqqyoyoyo完成签到,获得积分10
24秒前
25秒前
pipi发布了新的文献求助10
25秒前
Erueka完成签到,获得积分10
26秒前
26秒前
Sg完成签到,获得积分10
26秒前
彩色的荔枝完成签到 ,获得积分10
27秒前
过过发布了新的文献求助10
28秒前
qqqyoyoyo发布了新的文献求助10
28秒前
深居简出发布了新的文献求助30
29秒前
有梦想的咸鱼完成签到,获得积分10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777834
求助须知:如何正确求助?哪些是违规求助? 3323349
关于积分的说明 10213997
捐赠科研通 3038590
什么是DOI,文献DOI怎么找? 1667553
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758290