Machine learning based on functional and structural connectivity in mild cognitive impairment

功能连接 认知障碍 认知 心理学 计算机科学 神经科学 认知心理学 人工智能 机器学习 物理医学与康复 医学
作者
Yan Li,Yongjia Shao,Junlang Wang,Ling Yu,Yuhan Yang,Zijian Wang,Qi Xi
出处
期刊:Magnetic Resonance Imaging [Elsevier BV]
标识
DOI:10.1016/j.mri.2024.02.013
摘要

Alzheimer's disease (AD) is a chronic, degenerative neurological disorder characterized by progressive cognitive decline and mental behavioral abnormalities. Mild cognitive impairment (MCI) is regarded as a transitional stage in the progression from normal elderly individuals to patients with AD. While studies have identified abnormalities in brain connectivity in patients with MCI, including functional and structural connectivity, accurately identifying patients with MCI in clinical screening remains challenging. We hypothesized that utilizing machine learning (ML) based on both functional and structural connectivity could yield meaningful results in distinguishing between patients with MCI and normal elderly individuals, so as to provide valuable information for early diagnosis and precise evaluation of patients with MCI. Following clinical criteria, we recruited 32 patients with MCI for the patient group, and 32 normal elderly individuals for the control group. All subjects underwent examinations for resting-state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI). Subsequently, significant functional and structural connectivity features were selected and combined with a support vector machine for classification of the patient and control groups. We observed significantly different functional connectivity in the frontal lobe and putamen between the MCI group and normal controls. The results based on functional connectivity features demonstrated a classification accuracy of 71.88% and an area under the curve (AUC) value of 0.78. In terms of structural connectivity, we found that decreased fractional anisotropy in patients with MCI was significantly associated with Montreal Cognitive Assessment scores, specifically in regions such as the precuneus and cingulate gyrus. The classification results using the structural connectivity feature yielded an accuracy of 92.19% and an AUC value of 0.99. Lastly, combining functional and structural connectivity features resulted in a classification accuracy and AUC value of 93.75% and 0.99, respectively. In this study, we demonstrated a high classification performance, underscoring the potential of both brain functional and structural connectivity in distinguishing patients with MCI from normal elderly individuals. Furthermore, the integration of functional connectivity and structural connectivity features indicated that utilizing rs-fMRI and DTI could enhance the accuracy and specificity of identifying patients with MCI compared with relying on a single neuroimaging technique.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
TZ发布了新的文献求助10
1秒前
1秒前
阳光雨完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
5秒前
aK3完成签到,获得积分20
6秒前
丘比特应助STAN采纳,获得10
6秒前
6秒前
思源应助嗯哼采纳,获得10
6秒前
阳光雨发布了新的文献求助10
7秒前
难过风华完成签到,获得积分10
8秒前
aK3发布了新的文献求助10
9秒前
cumtxzs发布了新的文献求助10
9秒前
帅气冰珍发布了新的文献求助10
10秒前
大模型应助健忘的板凳采纳,获得10
11秒前
13秒前
领导范儿应助沉默的芒果采纳,获得10
13秒前
浮生发布了新的文献求助10
13秒前
蜗牛完成签到,获得积分10
14秒前
在水一方应助帅气冰珍采纳,获得10
14秒前
英姑应助帅帅中带点小坏采纳,获得10
15秒前
15秒前
乐乐应助bingsu108采纳,获得10
15秒前
Ava应助cumtxzs采纳,获得10
16秒前
远山笑你完成签到 ,获得积分10
17秒前
lianmeiliu发布了新的文献求助10
18秒前
18秒前
20秒前
adi完成签到,获得积分10
25秒前
26秒前
26秒前
26秒前
小W完成签到 ,获得积分10
27秒前
28秒前
29秒前
lqqqq发布了新的文献求助10
31秒前
32秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842878
求助须知:如何正确求助?哪些是违规求助? 3384881
关于积分的说明 10537922
捐赠科研通 3105474
什么是DOI,文献DOI怎么找? 1710326
邀请新用户注册赠送积分活动 823582
科研通“疑难数据库(出版商)”最低求助积分说明 774149