Protein Signatures for Distinguishing Colorectal Cancer Liver Metastases from Primary Liver Cancer Using Tissue Slide Proteomics

肝细胞癌 结直肠癌 蛋白质组学 病态的 转移 病理 医学 癌症 免疫组织化学 肝癌 鉴别诊断 癌症研究 计算生物学 肿瘤科 内科学 生物 基因 生物化学
作者
Xue Zhou,Xiuyuan Wang,Ruizhen Bai,Hanjie Li,Hua Dong,Xiao‐Dong Gao,Ganglong Yang,Dantong Liu
出处
期刊:Frontiers in bioscience [IMR Press]
卷期号:29 (1): 3-3
标识
DOI:10.31083/j.fbl2901003
摘要

Background: Colorectal cancer liver metastasis (CRLM) and hepatocellular carcinoma (HCC) are both high incidence tumors in China. In certain poorly differentiated cases they can exhibit comparable imaging and pathological characteristics, which impedes accurate clinical diagnosis. The use of protein-based techniques with tissue slides offers a more precise means to assess pathological changes and has the potential to assist with tumor diagnosis. Methods: A simple in situ protein digestion protocol was established for protein fingerprint analysis of paraffin-embedded tissue slide samples. Additionally, machine learning techniques were employed to construct predictive models for CRLM and HCC. The accuracy of these models was validated using tissue slides and a clinical database. Results: Analysis of differential protein expression between CRLM and HCC groups reliably identified 977 proteins. Among these, 53 were highly abundant in CRLM samples and 57 were highly abundant in HCC samples. A prediction model based on the expression of six proteins (CD9, GSTA1, KRT20, COL1A2, AKR1C3, and HIST2H2BD) had an area under curve (AUC) of 0.9667. This was further refined to three proteins (CD9, ALDH1A1, and GSTA1) with an AUC of 0.9333. Conclusions: Tissue slide proteomics can facilitate accurate differentiation between CRLM and HCC. This methodology holds great promise for improving clinical tumor diagnosis and for identifying novel markers for challenging pathological specimens.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hanxiao完成签到,获得积分10
1秒前
冲刺的仙人掌完成签到,获得积分10
2秒前
田様应助ywhys采纳,获得10
3秒前
Yzz完成签到,获得积分10
4秒前
6秒前
7秒前
火星仙人掌发布了新的文献求助150
9秒前
9秒前
谦让小丸子完成签到,获得积分10
11秒前
12秒前
tango完成签到,获得积分10
12秒前
13秒前
ZZQ发布了新的文献求助10
14秒前
打打应助fatcat采纳,获得30
15秒前
RHJ完成签到 ,获得积分10
15秒前
星辰大海应助Return采纳,获得10
16秒前
Adeline完成签到,获得积分10
17秒前
tango发布了新的文献求助10
18秒前
ywhys发布了新的文献求助10
18秒前
记得接电话完成签到,获得积分10
19秒前
FashionBoy应助qiulong采纳,获得10
20秒前
20秒前
科研通AI2S应助Allough采纳,获得10
21秒前
zzx完成签到,获得积分10
21秒前
hygge完成签到,获得积分10
21秒前
月亮快打烊吖完成签到 ,获得积分10
21秒前
开心的秋寒完成签到,获得积分10
22秒前
23秒前
务实天德完成签到,获得积分10
24秒前
24秒前
冷艳的孤晴完成签到,获得积分10
26秒前
26秒前
Cpp完成签到,获得积分10
26秒前
白天亮完成签到,获得积分10
28秒前
30秒前
张欣童666发布了新的文献求助10
31秒前
Gilana完成签到,获得积分10
31秒前
FLY完成签到,获得积分10
32秒前
天天快乐应助绿绿采纳,获得10
32秒前
zhy完成签到,获得积分10
32秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799241
求助须知:如何正确求助?哪些是违规求助? 3344889
关于积分的说明 10322351
捐赠科研通 3061369
什么是DOI,文献DOI怎么找? 1680250
邀请新用户注册赠送积分活动 806960
科研通“疑难数据库(出版商)”最低求助积分说明 763451