已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Traditional Chinese Medicine Prescription Recommendation Model Based on Large Language Models and Graph Neural Networks

药方 图形 公制(单位) 计算机科学 人工智能 草本植物 中医药 人工神经网络 卷积神经网络 中文 医学 机器学习 替代医学 自然语言处理 草药 传统医学 理论计算机科学 护理部 病理 经济 哲学 语言学 运营管理
作者
Juanzhi Qi,Xinyu Wang,Tao Yang
标识
DOI:10.1109/bibm58861.2023.10385489
摘要

Background: Traditional Chinese medicine (TCM) has a millennia-long history, offering unique treatments and insights into global health. Given the intricate symptoms and shifting syndrome patterns, prescribing can be tough for young doctors. TCM prescription recommendations can help these doctors address their experience gap. In recent years, with advancements in technologies such as artificial intelligence and big data, intelligent recommendations for TCM prescriptions have become feasible, holding significant implications for enhancing treatment efficacy and optimizing patient experience. Objective: This study aims to establish a novel TCM prescription recommendation model by integrating large language models with Graph Neural Network (GNN) to enhance the accuracy of prescription suggestions. Method: Based on the co-occurrence of symptoms and herbal medicines, we constructed symptom graphs, symptom-herb graphs, and herb-herb graphs. Using Graph Convolutional Network (GCN), we acquired embeddings for both symptoms and herbs. The symptom embeddings are then integrated with insights from large language model embeddings, while auxiliary information from an external knowledge graph is incorporated into the herb embeddings. A final list of herb recommendations was generated by interacting with the embeddings of symptoms and herbs. Results: The proposed algorithm achieved 22.1%, 17.2%, and 13% on the evaluation metrics P@5, P@10, and P@20, respectively. Concurrently, scores for R@5, R@10, and R@20 were 14%, 24%, and 32.5%, respectively. The P@5 metric surpassed the KDHR by 4.7%, and the R@20 metric exceeded the KDHR by 6%. Overall, the performance of our model outperformed other baseline models across various evaluation criteria. Conclusion: The TCM prescription recommendation model, infused with information from a large language model, can effectively enhance the outcomes of TCM prescription recommendations. The study may offer valuable insights for auxiliary clinical research and treatment in TCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
烟花应助背后的鞋垫采纳,获得10
3秒前
heihei发布了新的文献求助10
3秒前
萌萌哒完成签到,获得积分10
3秒前
Setsail24k发布了新的文献求助20
3秒前
学术大亨完成签到,获得积分10
3秒前
毛毛发布了新的文献求助10
5秒前
芒晨牧微完成签到,获得积分10
5秒前
6秒前
6秒前
一二一完成签到 ,获得积分10
7秒前
zoe关闭了zoe文献求助
8秒前
可可完成签到 ,获得积分10
8秒前
10秒前
李伊发布了新的文献求助10
16秒前
乐乐应助六沉采纳,获得10
17秒前
18秒前
18秒前
丘比特应助土豆采纳,获得10
23秒前
23秒前
Setsail24k完成签到,获得积分10
24秒前
26秒前
苏A尔发布了新的文献求助10
27秒前
28秒前
科研通AI5应助李伊采纳,获得10
29秒前
30秒前
yaxianzhi完成签到,获得积分10
31秒前
32秒前
单薄雁芙发布了新的文献求助10
32秒前
土豆发布了新的文献求助10
35秒前
37秒前
高兴的幻柏完成签到 ,获得积分10
37秒前
思源应助Naza1119采纳,获得10
42秒前
华仔应助珩溢采纳,获得10
42秒前
好事发生666完成签到,获得积分10
43秒前
43秒前
43秒前
黎长江完成签到,获得积分10
44秒前
46秒前
46秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792319
求助须知:如何正确求助?哪些是违规求助? 3336507
关于积分的说明 10281242
捐赠科研通 3053236
什么是DOI,文献DOI怎么找? 1675541
邀请新用户注册赠送积分活动 803492
科研通“疑难数据库(出版商)”最低求助积分说明 761436