已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Traditional Chinese Medicine Prescription Recommendation Model Based on Large Language Models and Graph Neural Networks

药方 图形 公制(单位) 计算机科学 人工智能 草本植物 中医药 人工神经网络 卷积神经网络 中文 医学 机器学习 替代医学 自然语言处理 草药 传统医学 理论计算机科学 护理部 病理 经济 哲学 语言学 运营管理
作者
Juanzhi Qi,Xinyu Wang,Tao Yang
标识
DOI:10.1109/bibm58861.2023.10385489
摘要

Background: Traditional Chinese medicine (TCM) has a millennia-long history, offering unique treatments and insights into global health. Given the intricate symptoms and shifting syndrome patterns, prescribing can be tough for young doctors. TCM prescription recommendations can help these doctors address their experience gap. In recent years, with advancements in technologies such as artificial intelligence and big data, intelligent recommendations for TCM prescriptions have become feasible, holding significant implications for enhancing treatment efficacy and optimizing patient experience. Objective: This study aims to establish a novel TCM prescription recommendation model by integrating large language models with Graph Neural Network (GNN) to enhance the accuracy of prescription suggestions. Method: Based on the co-occurrence of symptoms and herbal medicines, we constructed symptom graphs, symptom-herb graphs, and herb-herb graphs. Using Graph Convolutional Network (GCN), we acquired embeddings for both symptoms and herbs. The symptom embeddings are then integrated with insights from large language model embeddings, while auxiliary information from an external knowledge graph is incorporated into the herb embeddings. A final list of herb recommendations was generated by interacting with the embeddings of symptoms and herbs. Results: The proposed algorithm achieved 22.1%, 17.2%, and 13% on the evaluation metrics P@5, P@10, and P@20, respectively. Concurrently, scores for R@5, R@10, and R@20 were 14%, 24%, and 32.5%, respectively. The P@5 metric surpassed the KDHR by 4.7%, and the R@20 metric exceeded the KDHR by 6%. Overall, the performance of our model outperformed other baseline models across various evaluation criteria. Conclusion: The TCM prescription recommendation model, infused with information from a large language model, can effectively enhance the outcomes of TCM prescription recommendations. The study may offer valuable insights for auxiliary clinical research and treatment in TCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Flash完成签到 ,获得积分10
2秒前
ASH完成签到 ,获得积分10
2秒前
claire完成签到,获得积分10
4秒前
宝贝完成签到,获得积分10
5秒前
CodeCraft应助风吹不到海湾采纳,获得10
5秒前
不敢自称科研人完成签到,获得积分10
7秒前
Lirui2333完成签到 ,获得积分10
8秒前
liu发布了新的文献求助10
10秒前
10秒前
12秒前
夜蛐蛐发布了新的文献求助10
15秒前
小花发布了新的文献求助10
16秒前
苗条晓亦完成签到,获得积分20
16秒前
领导范儿应助kk采纳,获得10
17秒前
刘玉梅发布了新的文献求助10
18秒前
冷酷的海亦完成签到,获得积分10
18秒前
22秒前
23秒前
共享精神应助夜蛐蛐采纳,获得10
24秒前
24秒前
iartist完成签到,获得积分10
25秒前
韩星发布了新的文献求助10
25秒前
26秒前
29秒前
卷卷516发布了新的文献求助10
30秒前
31秒前
苗条晓亦发布了新的文献求助10
32秒前
打工仔完成签到 ,获得积分10
35秒前
tzx发布了新的文献求助10
36秒前
星辉之月发布了新的文献求助10
38秒前
传奇3应助Crayon采纳,获得10
41秒前
StayGolDay完成签到,获得积分10
42秒前
46秒前
刘玉梅完成签到,获得积分10
47秒前
48秒前
48秒前
小花关注了科研通微信公众号
48秒前
希望天下0贩的0应助tzx采纳,获得10
50秒前
fred发布了新的文献求助30
53秒前
XinG完成签到,获得积分10
56秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Homogenization of Differential Operators and Integral Functionals 500
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3927597
求助须知:如何正确求助?哪些是违规求助? 3472309
关于积分的说明 10972181
捐赠科研通 3202156
什么是DOI,文献DOI怎么找? 1769198
邀请新用户注册赠送积分活动 857963
科研通“疑难数据库(出版商)”最低求助积分说明 796225