TransNeXt: Robust Foveal Visual Perception for Vision Transformers

计算机科学 中央凹 人工智能 稳健性(进化) 安全性令牌 计算机视觉 模式识别(心理学) 计算机安全 生物化学 基因 化学 视网膜
作者
Shi Dai
出处
期刊:Cornell University - arXiv 被引量:11
标识
DOI:10.48550/arxiv.2311.17132
摘要

Due to the depth degradation effect in residual connections, many efficient Vision Transformers models that rely on stacking layers for information exchange often fail to form sufficient information mixing, leading to unnatural visual perception. To address this issue, in this paper, we propose Aggregated Attention, a biomimetic design-based token mixer that simulates biological foveal vision and continuous eye movement while enabling each token on the feature map to have a global perception. Furthermore, we incorporate learnable tokens that interact with conventional queries and keys, which further diversifies the generation of affinity matrices beyond merely relying on the similarity between queries and keys. Our approach does not rely on stacking for information exchange, thus effectively avoiding depth degradation and achieving natural visual perception. Additionally, we propose Convolutional GLU, a channel mixer that bridges the gap between GLU and SE mechanism, which empowers each token to have channel attention based on its nearest neighbor image features, enhancing local modeling capability and model robustness. We combine aggregated attention and convolutional GLU to create a new visual backbone called TransNeXt. Extensive experiments demonstrate that our TransNeXt achieves state-of-the-art performance across multiple model sizes. At a resolution of $224^2$, TransNeXt-Tiny attains an ImageNet accuracy of 84.0%, surpassing ConvNeXt-B with 69% fewer parameters. Our TransNeXt-Base achieves an ImageNet accuracy of 86.2% and an ImageNet-A accuracy of 61.6% at a resolution of $384^2$, a COCO object detection mAP of 57.1, and an ADE20K semantic segmentation mIoU of 54.7.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
范范发布了新的文献求助10
刚刚
Bob发布了新的文献求助10
刚刚
111完成签到,获得积分10
刚刚
小鱼完成签到 ,获得积分10
1秒前
zc完成签到 ,获得积分10
1秒前
科研通AI6应助123采纳,获得10
1秒前
翔哥发布了新的文献求助10
1秒前
1秒前
2秒前
善学以致用应助momo采纳,获得10
2秒前
梅川库子发布了新的文献求助10
3秒前
杜昌淼完成签到,获得积分10
3秒前
Nini1203发布了新的文献求助10
3秒前
3秒前
sdfgv发布了新的文献求助10
4秒前
科研通AI5应助周兰兰采纳,获得10
4秒前
4秒前
自由思枫发布了新的文献求助10
4秒前
antarctica完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
浮浮发布了新的文献求助10
6秒前
树杪发布了新的文献求助10
6秒前
酷波er应助杜昌淼采纳,获得10
6秒前
7秒前
烟花应助芝士奶盖有点咸采纳,获得10
8秒前
xxg发布了新的文献求助10
9秒前
希望天下0贩的0应助hyg采纳,获得30
9秒前
wangji发布了新的文献求助10
9秒前
星辰大海应助Chelsea采纳,获得10
9秒前
9秒前
根号3发布了新的文献求助30
10秒前
小二郎应助Bob采纳,获得10
10秒前
廖廖完成签到,获得积分20
10秒前
10秒前
10秒前
Owen应助刘二狗采纳,获得10
11秒前
斐波拉切土豆完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4478351
求助须知:如何正确求助?哪些是违规求助? 3935846
关于积分的说明 12210724
捐赠科研通 3590566
什么是DOI,文献DOI怎么找? 1974377
邀请新用户注册赠送积分活动 1011678
科研通“疑难数据库(出版商)”最低求助积分说明 905165