AT-PINN: Advanced time-marching physics-informed neural network for structural vibration analysis

振动 计算机科学 时域 偏微分方程 偏移量(计算机科学) 规范化(社会学) 算法 数学优化 数学 物理 数学分析 计算机视觉 声学 人类学 社会学 程序设计语言
作者
Zhaolin Chen,S.K. Lai,Zhichun Yang
出处
期刊:Thin-walled Structures [Elsevier BV]
卷期号:196: 111423-111423 被引量:14
标识
DOI:10.1016/j.tws.2023.111423
摘要

Solving partial differential equations through deep learning has recently received wide attention, with physics-informed neural networks (PINNs) being successfully used and showing great potential. This study focuses on the development of an efficient PINN approach for structural vibration analysis in “long-duration” simulation that is still a technical but unresolved issue of PINN. The accuracies of the standard PINN (STD-PINN) and conventional time-marching PINN (CT-PINN) methods in solving vibration equations, especially free-vibration equations, are shown to decrease to varying degrees with the simulation time. To resolve this problem, an advanced time-marching PINN (AT-PINN) approach is proposed. This method is used to solve structural vibration problems over successive time segments by adopting four key techniques: normalization of the spatiotemporal domain in each time segment, a reactivating optimization algorithm, transfer learning and the sine activation function. To illustrate the advantages of the AT-PINN approach, numerical simulations of the forced and free vibration of a string, beam and plate are performed. In addition, the vibration analysis of a plate under multi-physics loads is also studied. The results show that the AT-PINN approach can provide accurate solutions with lower computational cost even in long-duration simulation. The techniques adopted are verified to effectively avoid the offset of the spatiotemporal domain, reduce the accumulative error and enhance the training efficiency. The present one overcomes the drawback of the existing PINN methods and is expected to become an effective method for solving time-dependent partial differential equations in long-duration simulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
林九潇完成签到,获得积分10
1秒前
gecko19gecko发布了新的文献求助10
1秒前
格茸完成签到 ,获得积分20
1秒前
1秒前
2秒前
Hello应助七七采纳,获得10
2秒前
852应助寒月如雪采纳,获得10
2秒前
温暖寻云发布了新的文献求助10
2秒前
一念初见发布了新的文献求助10
3秒前
噜噜噜噜噜完成签到,获得积分10
3秒前
整齐红酒完成签到,获得积分10
3秒前
大鱼完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
胡说八道完成签到 ,获得积分10
5秒前
TUTU完成签到,获得积分10
5秒前
李健应助元锦程采纳,获得10
5秒前
6秒前
西出阳关发布了新的文献求助10
6秒前
yzxzdm完成签到 ,获得积分10
7秒前
Davidfly20完成签到,获得积分10
7秒前
7秒前
7秒前
苡若完成签到 ,获得积分10
7秒前
斯文败类应助情红锐采纳,获得10
7秒前
Gavin发布了新的文献求助10
7秒前
hahaha完成签到 ,获得积分10
7秒前
8秒前
小杨完成签到 ,获得积分10
8秒前
9秒前
可口可乐发布了新的文献求助10
9秒前
KKK发布了新的文献求助10
10秒前
Zmy应助无糖可乐采纳,获得10
10秒前
过时的明杰完成签到 ,获得积分10
11秒前
Lilian-W完成签到,获得积分10
11秒前
11秒前
tuntunliu完成签到,获得积分10
11秒前
LULU完成签到,获得积分10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792936
求助须知:如何正确求助?哪些是违规求助? 3337536
关于积分的说明 10285691
捐赠科研通 3054189
什么是DOI,文献DOI怎么找? 1675858
邀请新用户注册赠送积分活动 803846
科研通“疑难数据库(出版商)”最低求助积分说明 761578