Meningioma consistency assessment based on the fusion of deep learning features and radiomics features

医学 脑膜瘤 无线电技术 一致性(知识库) 深度学习 人工智能 融合 医学物理学 放射科 语言学 计算机科学 哲学
作者
Jiatian Zhang,Yajing Zhao,Yiping Lu,Peng Li,Shijie Dang,Xuanxuan Li,Bo Yin,Lingxiao Zhao
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:170: 111250-111250 被引量:5
标识
DOI:10.1016/j.ejrad.2023.111250
摘要

This study aims to combine deep learning features with radiomics features for the computer-assisted preoperative assessment of meningioma consistency.202 patients with surgery and pathological diagnosis of meningiomas at our institution between December 2016 and December 2018 were retrospectively included in the study. The T2-fluid attenuated inversion recovery (T2-Flair) images were evaluated to classify meningioma as soft or hard by professional neurosurgeons based on Zada's consistency grading system. All the patients were split randomly into a training cohort (n = 162) and a testing cohort (n = 40). A convolutional neural network (CNN) model was proposed to extract deep learning features. These deep learning features were combined with radiomics features. After multiple feature selections, selected features were used to construct classification models using four classifiers. AUC was used to evaluate the performance of each classifier. A signature was further constructed by using the least absolute shrinkage and selection operator (LASSO). A nomogram based on the signature was created for predicting meningioma consistency.The logistic regression classifier constructed using 17 radiomics features and 9 deep learning features provided the best performance with a precision of 0.855, a recall of 0.854, an F1-score of 0.852 and an AUC of 0.943 (95 % CI, 0.873-1.000) in the testing cohort. The C-index of the nomogram was 0.822 (95 % CI, 0.758-0.885) in the training cohort and 0.943 (95 % CI, 0.873-1.000) in the testing cohort with good calibration. Decision curve analysis further confirmed the clinical usefulness of the nomogram for predicting meningioma consistency.The proposed method for assessing meningioma consistency based on the fusion of deep learning features and radiomics features is potentially clinically valuable. It can be used to assist physicians in the preoperative determination of tumor consistency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
yi只熊完成签到,获得积分10
4秒前
知了完成签到 ,获得积分10
9秒前
21秒前
钟钟完成签到 ,获得积分10
21秒前
Jasper应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得30
22秒前
wanci应助科研通管家采纳,获得10
22秒前
失眠醉易应助科研通管家采纳,获得10
22秒前
23秒前
23秒前
26秒前
Fischl完成签到 ,获得积分10
26秒前
27秒前
林洁佳完成签到,获得积分10
30秒前
JamesPei应助devilito采纳,获得10
31秒前
幽默山兰发布了新的文献求助10
32秒前
文G完成签到,获得积分20
32秒前
乐乐应助JxJ采纳,获得10
33秒前
林洁佳发布了新的文献求助100
34秒前
35秒前
35秒前
36秒前
唐咩咩咩发布了新的文献求助10
38秒前
贝贝完成签到,获得积分10
39秒前
40秒前
贝贝发布了新的文献求助10
42秒前
45343发布了新的文献求助10
44秒前
46秒前
香蕉觅云应助贝贝采纳,获得10
47秒前
领导范儿应助lll采纳,获得10
49秒前
唐咩咩咩完成签到,获得积分10
50秒前
51秒前
852应助欣慰晓兰采纳,获得30
55秒前
56秒前
kai发布了新的文献求助10
57秒前
陌上尘开完成签到 ,获得积分10
57秒前
1分钟前
Firstoronre完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778778
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217992
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668089
邀请新用户注册赠送积分活动 798545
科研通“疑难数据库(出版商)”最低求助积分说明 758415