Atomic-Scale Insights Into Graphene/Fullerene Tribological Mechanisms and Machine Learning Prediction of Properties

富勒烯 石墨烯 摩擦学 原子单位 比例(比率) 材料科学 纳米技术 化学 复合材料 物理 量子力学 有机化学
作者
Feng Qiu,Hui Song,Weimin Feng,Zhiquan Yang,Ziyan Lu,Xianguo Hu
出处
期刊:Journal of tribology [ASM International]
卷期号:146 (6) 被引量:6
标识
DOI:10.1115/1.4064402
摘要

Abstract Graphene/fullerene carbon–based nanoparticles exhibit excellent tribological properties in solid–liquid two-phase lubrication systems. However, the tribological mechanism still lacks profound insights into dynamic friction processes at the atomic scale. In this paper, the friction reduction and anti-wear mechanism of graphene/fullerene nanoparticles and the synergistic lubrication effect of the binary additive system were investigated by molecular dynamics simulations and tribological experiments. The friction performance was predicted based on six machine learning algorithms. The results indicated that in fluid lubrication, graphene promoted “liquid–liquid” interlayer sliding, whereas fullerene facilitated “solid–liquid” interface sliding, resulting in a decrease or increase in friction force. Under boundary lubrication, graphene/fullerene nanoparticles were adsorbed and anchored at the metal interface to form a physical protective film, which improved the bearing capacity of the lubricating oil film, transformed the direct contact between asperities into interlayer sliding of graphene and roll–slide polishing, filling, and repairing of fullerene, thus improving the frictional wear of the lubrication system as well as the friction temperature rise and stress concentration of the asperities. Furthermore, six machine learning algorithms showed low error and high precision, and the coefficient of determination was greater than 0.9, indicating that all models had good prediction and generalization capabilities, fully demonstrating the feasibility of combining molecular simulation and machine learning applications in the field of tribology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
繁荣的秋完成签到,获得积分10
刚刚
dennisysz发布了新的文献求助10
3秒前
思源应助阿兵采纳,获得10
4秒前
6秒前
小二郎应助vivian采纳,获得20
6秒前
万能图书馆应助melody采纳,获得10
7秒前
花开hhhhhhh完成签到,获得积分10
8秒前
熊猫胖大怂完成签到,获得积分10
8秒前
万能图书馆应助cmd采纳,获得10
10秒前
10秒前
SigRosa发布了新的文献求助10
11秒前
阿柴_Htao完成签到,获得积分20
13秒前
英俊铸海发布了新的文献求助10
14秒前
rich发布了新的文献求助30
14秒前
阳光问安完成签到 ,获得积分10
14秒前
标致溪流完成签到,获得积分10
15秒前
19秒前
SigRosa完成签到,获得积分10
22秒前
dreamlife发布了新的文献求助10
23秒前
GUGU完成签到 ,获得积分10
25秒前
852发布了新的文献求助10
27秒前
27秒前
阿柴_Htao关注了科研通微信公众号
28秒前
GUGU关注了科研通微信公众号
29秒前
Lyn完成签到 ,获得积分10
30秒前
荔枝多酚完成签到,获得积分10
31秒前
kkkl完成签到,获得积分10
33秒前
YIEYA完成签到 ,获得积分10
34秒前
YiyueChan完成签到,获得积分10
34秒前
36秒前
36秒前
dreamlife完成签到,获得积分10
36秒前
Jonathan完成签到,获得积分10
38秒前
huangjing发布了新的文献求助10
41秒前
QL驳回了田様应助
42秒前
dennisysz发布了新的文献求助10
43秒前
库凯伊完成签到,获得积分10
43秒前
43秒前
44秒前
Bear完成签到 ,获得积分10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777414
求助须知:如何正确求助?哪些是违规求助? 3322767
关于积分的说明 10211585
捐赠科研通 3038128
什么是DOI,文献DOI怎么找? 1667131
邀请新用户注册赠送积分活动 797971
科研通“疑难数据库(出版商)”最低求助积分说明 758103