已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Atomic-Scale Insights Into Graphene/Fullerene Tribological Mechanisms and Machine Learning Prediction of Properties

富勒烯 石墨烯 摩擦学 原子单位 比例(比率) 材料科学 纳米技术 化学 复合材料 物理 量子力学 有机化学
作者
Feng Qiu,Hui Song,Weimin Feng,Zhiquan Yang,Ziyan Lu,Xianguo Hu
出处
期刊:Journal of tribology [ASM International]
卷期号:146 (6) 被引量:9
标识
DOI:10.1115/1.4064402
摘要

Abstract Graphene/fullerene carbon–based nanoparticles exhibit excellent tribological properties in solid–liquid two-phase lubrication systems. However, the tribological mechanism still lacks profound insights into dynamic friction processes at the atomic scale. In this paper, the friction reduction and anti-wear mechanism of graphene/fullerene nanoparticles and the synergistic lubrication effect of the binary additive system were investigated by molecular dynamics simulations and tribological experiments. The friction performance was predicted based on six machine learning algorithms. The results indicated that in fluid lubrication, graphene promoted “liquid–liquid” interlayer sliding, whereas fullerene facilitated “solid–liquid” interface sliding, resulting in a decrease or increase in friction force. Under boundary lubrication, graphene/fullerene nanoparticles were adsorbed and anchored at the metal interface to form a physical protective film, which improved the bearing capacity of the lubricating oil film, transformed the direct contact between asperities into interlayer sliding of graphene and roll–slide polishing, filling, and repairing of fullerene, thus improving the frictional wear of the lubrication system as well as the friction temperature rise and stress concentration of the asperities. Furthermore, six machine learning algorithms showed low error and high precision, and the coefficient of determination was greater than 0.9, indicating that all models had good prediction and generalization capabilities, fully demonstrating the feasibility of combining molecular simulation and machine learning applications in the field of tribology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
G玲发布了新的文献求助20
刚刚
2秒前
2秒前
Lucas应助lingo采纳,获得10
4秒前
sam1完成签到,获得积分20
5秒前
Owen应助研猫采纳,获得10
5秒前
CodeCraft应助yanwei采纳,获得10
5秒前
orixero应助wangxiaoer采纳,获得10
7秒前
KH发布了新的文献求助10
10秒前
12秒前
Hello应助九木德采纳,获得10
13秒前
13秒前
慕青应助wwway采纳,获得10
14秒前
吃鲨鱼的小虾米完成签到 ,获得积分10
14秒前
大模型应助研猫采纳,获得10
15秒前
子非鱼关注了科研通微信公众号
16秒前
852应助好好学习采纳,获得10
17秒前
17秒前
17秒前
LPL关闭了LPL文献求助
18秒前
柠檬多多发布了新的文献求助30
19秒前
Werido完成签到 ,获得积分10
22秒前
虎正凯完成签到 ,获得积分10
22秒前
23秒前
Rita发布了新的文献求助10
23秒前
24秒前
斯文的晓夏完成签到 ,获得积分10
26秒前
skyer1完成签到,获得积分10
28秒前
董咚咚发布了新的文献求助10
28秒前
魔女完成签到 ,获得积分10
29秒前
领导范儿应助大聪采纳,获得10
31秒前
31秒前
慕青应助伶俐的血茗采纳,获得10
32秒前
34秒前
无情老太完成签到,获得积分10
34秒前
ycywm25发布了新的文献求助10
34秒前
丘比特应助尕尕娃娃328采纳,获得10
34秒前
35秒前
打打应助研友_EZ1YgZ采纳,获得10
35秒前
shary关注了科研通微信公众号
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
A coordinated control system for truck cabin suspension based on model predictive control 420
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4680647
求助须知:如何正确求助?哪些是违规求助? 4056694
关于积分的说明 12543735
捐赠科研通 3751469
什么是DOI,文献DOI怎么找? 2071889
邀请新用户注册赠送积分活动 1101072
科研通“疑难数据库(出版商)”最低求助积分说明 980388