Chitosan synergizes with bismuth-based metal-organic frameworks to construct double S-type heterojunctions for enhancing photocatalytic antimicrobial activity

光催化 抗菌剂 光电流 异质结 介电谱 氧化还原 化学 纳米技术 电化学 化学工程 光化学 材料科学 有机化学 电极 催化作用 光电子学 工程类 物理化学 冶金
作者
Yanni Li,Yujia Han,Hongxia Li,Xiaohui Niu,Deyi Zhang,Haiyan Fan,Kunjie Wang
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:265: 130797-130797 被引量:12
标识
DOI:10.1016/j.ijbiomac.2024.130797
摘要

In recent years, photocatalytic technology has been introduced to develop a new kind antimicrobial agents fighting antibiotic abusing and related drug resistance. The efforts have focused on non-precious metal photocatalysts along with green additives. In the present work, a novel bis-S heterojunctions based on the coupling of polysaccharide (CS) and bismuth-based MOF (CAU-17) s synthesized through a two-step method involving amidation reaction under mild conditions. The as prepared photocatalyst literally extended the light response to the near-infrared region. Owing to its double S-type heterostructure, the lifetime of the photocarriers is significantly prolonged and the redox capacity are enhanced. As a result, the as prepared photocatalyst indicated inhibition up to 99.9 % under 20 min of light exposure against Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria as well as drug-resistant bacteria (MRSA). The outstanding photocatalytic performance is attributed to the effective charge separation and migration due to the unique double S heterostructure. Such a double S heterostructure was confirmed through transient photocurrent response, electrochemical impedance spectroscopy tests and electron spin resonance measurements. The present work provides a basis for the simple synthesis of high-performance heterojunction photocatalytic inhibitors, which extends the application of CAU-17 in environmental disinfection and wastewater purification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Allein完成签到,获得积分10
1秒前
1秒前
1秒前
热情曲奇完成签到,获得积分10
2秒前
2秒前
2秒前
浮游应助xiao123采纳,获得10
2秒前
2秒前
XL关注了科研通微信公众号
3秒前
bkagyin应助hxx采纳,获得10
5秒前
6秒前
charlesliu116发布了新的文献求助10
6秒前
6秒前
清秀送终完成签到,获得积分10
7秒前
7秒前
7秒前
mads发布了新的文献求助10
8秒前
传奇3应助Lucky采纳,获得10
8秒前
酷酷麦片完成签到,获得积分10
9秒前
HHH完成签到,获得积分10
9秒前
阿鹿完成签到,获得积分20
9秒前
10秒前
YTT发布了新的文献求助10
10秒前
呆萌芙蓉发布了新的文献求助10
11秒前
丘比特应助迷人的Jack采纳,获得10
11秒前
12秒前
华老五完成签到,获得积分10
12秒前
14秒前
英吉利25发布了新的文献求助50
14秒前
14秒前
小松奈奈完成签到 ,获得积分10
15秒前
tyy发布了新的文献求助10
18秒前
舒心世平发布了新的文献求助10
18秒前
SciGPT应助Z777采纳,获得10
19秒前
量子星尘发布了新的文献求助30
19秒前
20秒前
可可发布了新的文献求助30
21秒前
凉冰完成签到,获得积分10
21秒前
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5436885
求助须知:如何正确求助?哪些是违规求助? 4548752
关于积分的说明 14216335
捐赠科研通 4469149
什么是DOI,文献DOI怎么找? 2449356
邀请新用户注册赠送积分活动 1440294
关于科研通互助平台的介绍 1416755