聚氨酯
石油化工
聚酯纤维
单体
多元醇
可再生资源
高分子科学
可再生能源
生物降解
化学
材料科学
聚合物
有机化学
废物管理
工程类
电气工程
作者
Aaron Bruckbauer,Gordon B. Scofield,Marco N. Allemann,Jaysen Reindel,Jiayu Zhao,Ayden N. Howell,Thomas Frisch,Lindsey Johnson,Payton Evans,Robert S. Pomeroy,Ryan Simkovsky,Jinhye Bae,Stephen P. Mayfield,Michael D. Burkart
出处
期刊:Macromolecules
[American Chemical Society]
日期:2024-03-12
卷期号:57 (6): 2879-2887
被引量:23
标识
DOI:10.1021/acs.macromol.3c02356
摘要
The transition to renewable plastics will require the development of substitutes with existing industrial standards and manufacturing processes. Polyurethanes (PU), versatile plastics, are traditionally dominated by aromatic diisocyanates, which are challenging to derive from renewable sources. However, for higher biocontent, it is crucial to utilize aliphatic diisocyanates, which can be sourced from renewable plant or algae waste streams. Historically, PU foams relied on aromatic diisocyanates for essential hard segments, resulting in desired physical properties. Here, we report the generation of high-performance renewable and biodegradable PU foams utilizing aliphatic diisocyanates and aromatic polyols, translating hard segments into the polyester polyol component using biosourced furan dicarboxylic acid (FDCA) monomers. We demonstrate that an FDCA-based PU is suitable for foams with performance characteristics that meet commercial tolerances and can biodegrade under backyard compost conditions. Here, this demonstrates steps toward redesigning traditional petrochemical-based polymers to accommodate new biological monomers.
科研通智能强力驱动
Strongly Powered by AbleSci AI