Interpretable deep learning model for major depressive disorder assessment based on functional near-infrared spectroscopy

功能近红外光谱 心理学 背外侧前额叶皮质 重性抑郁障碍 判别式 萧条(经济学) 神经科学 临床心理学 医学 听力学 精神科 人工智能 计算机科学 认知 经济 宏观经济学 前额叶皮质
作者
Cyrus S. H. Ho,Jin-Yuan Wang,Gabrielle Wann Nii Tay,Roger Ho,Syeda Fabeha Husain,Soon Kiat Chiang,Hai Lin,Xiao Cheng,Zhifei Li,Nanguang Chen
出处
期刊:Asian Journal of Psychiatry [Elsevier BV]
卷期号:92: 103901-103901 被引量:12
标识
DOI:10.1016/j.ajp.2023.103901
摘要

Major depressive disorder (MDD) affects a substantial number of individuals worldwide. New approaches are required to improve the diagnosis of MDD, which relies heavily on subjective reports of depression-related symptoms. Establish an objective measurement and evaluation of MDD. Functional near-infrared spectroscopy (fNIRS) was used to investigate the brain activity of MDD patients and healthy controls (HCs). Leveraging a sizeable fNIRS dataset of 263 HCs and 251 patients with MDD, including mild to moderate MDD (mMDD; n=139) and severe MDD (sMDD; n=77), we developed an interpretable deep learning model for screening MDD and staging its severity. The proposed deep learning model achieved an accuracy of 80.9% in diagnostic classification and 78.6% in severity staging for MDD. We discerned five channels with the most significant contribution to MDD identification through Shapley additive explanations (SHAP), located in the right medial prefrontal cortex, right dorsolateral prefrontal cortex, right superior temporal gyrus, and left posterior superior frontal cortex. The findings corresponded closely to the features of haemoglobin responses between HCs and individuals with MDD, as we obtained a good discriminative ability for MDD using cortical channels that are related to the disorder, namely the frontal and temporal cortical channels with areas under the curve of 0.78 and 0.81, respectively. Our study demonstrated the potential of integrating the fNIRS system with artificial intelligence algorithms to classify and stage MDD in clinical settings using a large dataset. This approach can potentially enhance MDD assessment and provide insights for clinical diagnosis and intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
czephyr完成签到,获得积分10
刚刚
刚刚
1秒前
香蕉觅云应助朴素的凡梦采纳,获得10
1秒前
Aoman完成签到,获得积分20
3秒前
4秒前
系统提示完成签到,获得积分10
4秒前
4秒前
超帅的碱发布了新的文献求助10
5秒前
ForestYYY发布了新的文献求助10
6秒前
6秒前
AlwaysKim发布了新的文献求助10
8秒前
8秒前
9秒前
Vanilla完成签到 ,获得积分10
9秒前
顾矜应助董冬咚采纳,获得10
10秒前
Helium发布了新的文献求助10
11秒前
11秒前
12秒前
完美世界应助科研通管家采纳,获得10
13秒前
宇宙无敌完成签到 ,获得积分10
13秒前
JamesPei应助科研通管家采纳,获得30
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
上官若男应助科研通管家采纳,获得10
14秒前
bkagyin应助小杨爱晒太阳采纳,获得10
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
丘比特应助科研通管家采纳,获得10
14秒前
14秒前
大个应助科研通管家采纳,获得10
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
wanci应助科研通管家采纳,获得10
14秒前
李健应助科研通管家采纳,获得10
14秒前
wanci应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
14秒前
小马甲应助科研通管家采纳,获得10
14秒前
无心的平蝶完成签到 ,获得积分10
15秒前
15秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4132947
求助须知:如何正确求助?哪些是违规求助? 3669701
关于积分的说明 11604575
捐赠科研通 3366414
什么是DOI,文献DOI怎么找? 1849564
邀请新用户注册赠送积分活动 913115
科研通“疑难数据库(出版商)”最低求助积分说明 828453