Spatial-Frequency Multi-Scale Transformer for Deblurring and Shape-Preserving Reconstruction in Magnetic Particle Imaging

计算机科学 去模糊 变压器 磁粉成像 人工智能 空间频率 频域 体素 缩放空间 特征提取 计算机视觉 模式识别(心理学) 图像处理 磁性纳米粒子 图像复原 图像(数学) 物理 光学 量子力学 电压 纳米颗粒
作者
Yaxin Shang,Jie Liu,Yanjun Liu,Yueqi Wang,Yusong Shen,Xiangjun Wu,Liwen Zhang,Hui Hui,Jie Tian
出处
期刊:IEEE transactions on computational imaging 卷期号:10: 196-207
标识
DOI:10.1109/tci.2024.3356859
摘要

Magnetic particle imaging (MPI) is a novel and emerging functional imaging technique that visualizes the spatial distribution of magnetic nanoparticles (MNPs). While the X-space method considers some important physical properties of MPI systems, it also neglects some phenomena, such as signals generated by MNPs outside (but close-to) the field-free region. Therefore, the X-space approach often results in blurring artifacts and incomplete edge information in native MPI images. In this study, we propose a spatial-frequency multi-scale transformer (SFM-Transformer) to address this limitation by restoring both the spatial and frequency domain features of the native image. SFM-Transformer comprises three modules: the spatial and frequency feature extractor module (SFFE), the spatial and frequency fusion module (SFF), and the multi-scale fusion module (MSF). By incorporating cross-feature space dependencies and capturing long-range details in spatial and frequency domains, our network captures pixel-level features and implicit physical properties features of native images. Furthermore, the SFM-Transformer utilizes a multi-scale strategy at the backbone to further improve performance. To facilitate comprehensive research, we construct a diverse dataset containing both simulated and experimental datasets. To validate the effectiveness of our method, we conduct extensive experiments in simulated and experimental data. The experimental results demonstrate that our method eliminates the blurring artifacts and recovers the edge shape of MPI images. This suggests that our approach has great potential for improving the accuracy and reliability of MPI for future applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柯科研完成签到,获得积分10
刚刚
甜崽完成签到,获得积分20
刚刚
刚刚
专一的猎豹完成签到,获得积分10
刚刚
bliyaa发布了新的文献求助10
1秒前
2秒前
3秒前
Akim应助大狒狒采纳,获得30
3秒前
李健的粉丝团团长应助111采纳,获得10
3秒前
Joselyn完成签到,获得积分10
3秒前
咕咕完成签到,获得积分10
3秒前
4秒前
科目三应助LPL采纳,获得30
4秒前
溪鱼安发布了新的文献求助10
4秒前
5秒前
5秒前
上善若水完成签到 ,获得积分10
5秒前
甜崽发布了新的文献求助10
6秒前
yaooo完成签到 ,获得积分10
6秒前
粗犷的书包完成签到,获得积分10
6秒前
hhhhhhhhhh完成签到 ,获得积分10
7秒前
花痴的慕蕊完成签到,获得积分10
7秒前
彩色亿先完成签到 ,获得积分10
7秒前
123完成签到,获得积分10
7秒前
科研通AI5应助麦凯采纳,获得10
7秒前
张姣姣完成签到,获得积分10
8秒前
丫丫发布了新的文献求助30
8秒前
楠D完成签到,获得积分10
8秒前
milk完成签到 ,获得积分10
8秒前
愤怒的树叶完成签到,获得积分10
9秒前
9秒前
xiuxiuxiu发布了新的文献求助10
9秒前
痴情的靖柔完成签到 ,获得积分10
10秒前
10秒前
毅梦完成签到,获得积分10
10秒前
杨888完成签到,获得积分10
10秒前
陛下发布了新的文献求助10
10秒前
11秒前
11秒前
姜淮完成签到 ,获得积分10
12秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
The Oxford Handbook of Video Game Music and Sound 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827518
求助须知:如何正确求助?哪些是违规求助? 3369790
关于积分的说明 10457969
捐赠科研通 3089470
什么是DOI,文献DOI怎么找? 1699905
邀请新用户注册赠送积分活动 817560
科研通“疑难数据库(出版商)”最低求助积分说明 770263