Comparison of 2D and 3D vegetation species mapping in three natural scenarios using UAV-LiDAR point clouds and improved deep learning methods

激光雷达 点云 植被(病理学) 遥感 地理 湿地 采样(信号处理) 地图学 计算机科学 生态学 人工智能 计算机视觉 生物 医学 滤波器(信号处理) 病理
作者
Liwei Deng,Bolin Fu,Yan Wu,Hongchang He,Weiwei Sun,Mingming Jia,Tengfang Deng,Donglin Fan
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:125: 103588-103588 被引量:15
标识
DOI:10.1016/j.jag.2023.103588
摘要

Collaboration between Light Detection and Ranging (LiDAR) point clouds and deep learning has been proven to be an effective approach for vegetation mapping. Current studies have predominantly focused on 2D vegetation mapping, whereas 3D mapping, which directly classifies point clouds at point level, offers a more comprehensive understanding of the stratified structural information of vegetation. However, there is a lack of research on 3D vegetation species mapping, and the disparities between 2D and 3D mapping in natural scenarios remain unclear. To resolve these issues, we compared the deep learning performance of 2D and 3D vegetation species mapping across three distinct natural scenes: karst wetland, mangrove forest, and hill forest. In addition, the 2D and 3D mapping in natural scenes are adversely affected by the elevated channel count of LiDAR-derived features and the extreme category imbalance in point cloud. To mitigate these challenges, we propose a novel Multi-resolution Feature Selection Network (MrFSNet) to select optimal feature combinations at different scales for better 2D mapping performance. Additionally, we introduce a novel Dynamic Weighted Sampling (DWS) strategy, which is combined with KPConv to address the extreme category imbalance present in 3D mapping. Results indicate that: (1) 3D vegetation species mapping exhibited the highest performance, achieving an mF1 of 89.78% for karst wetland, 92.25% for mangrove forest, and 92.05% for hill forest. (2) 3D mapping outperformed 2D mapping, improving mF1 by 3.43% to 27.08%. (3) MrFSNet adaptively extracted optimal features at various scales and performed well with the limited training data in 2D vegetation mapping, resulting in a 1.66%–18.46% higher mF1 than that of Swin Transformer. (4) DWS effectively resolved the extreme category imbalance problem and produced 1.28%–2.80% higher mF1 than the non-DWS version in 3D vegetation mapping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
扬帆完成签到,获得积分20
1秒前
nenoaowu应助mao采纳,获得30
1秒前
情怀应助鲤鱼青雪采纳,获得10
3秒前
Harssi发布了新的文献求助10
3秒前
虚心的山雁完成签到,获得积分20
4秒前
SYLH应助JY采纳,获得50
5秒前
kaikaiYelloew发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
8秒前
9秒前
领导范儿应助Ari_Kun采纳,获得10
9秒前
大鼻子的新四岁完成签到,获得积分10
10秒前
小谢完成签到,获得积分10
10秒前
zzz发布了新的文献求助10
11秒前
舒心的久发布了新的文献求助10
11秒前
Freya应助exosome采纳,获得10
12秒前
wmm发布了新的文献求助10
12秒前
孤独从云应助LEETHEO采纳,获得10
13秒前
张鹏发布了新的文献求助10
13秒前
Harssi发布了新的文献求助10
15秒前
守望阳光1完成签到,获得积分10
15秒前
漓漓子发布了新的文献求助30
16秒前
19秒前
pluto应助甜美无剑采纳,获得10
20秒前
23秒前
科研通AI5应助悦耳的雨兰采纳,获得10
24秒前
25秒前
CodeCraft应助11122采纳,获得10
25秒前
25秒前
26秒前
27秒前
28秒前
深情安青应助mujin采纳,获得50
28秒前
29秒前
Harssi发布了新的文献求助10
29秒前
研友_LMg3PZ完成签到,获得积分10
29秒前
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784104
求助须知:如何正确求助?哪些是违规求助? 3329207
关于积分的说明 10240907
捐赠科研通 3044742
什么是DOI,文献DOI怎么找? 1671248
邀请新用户注册赠送积分活动 800203
科研通“疑难数据库(出版商)”最低求助积分说明 759241