A Deep Learning Application of Capsule Endoscopic Gastric Structure Recognition Based on a Transformer Model

医学 胶囊 内窥镜检查 变压器 胶囊内镜 人工智能 深度学习 放射科 内科学 计算机科学 植物 量子力学 生物 物理 电压
作者
Qingyuan Li,Weijie Xie,Yusi Wang,Kaiwen Qin,Mei Fa Huang,Tianbao Liu,Zefeiyun Chen,Lü Chen,Lan Teng,Yuxin Fang,Liuhua Ye,Zhen‐Yu Chen,Jie Zhang,Aimin Li,Wei Yang,Side Liu
出处
期刊:Journal of Clinical Gastroenterology [Ovid Technologies (Wolters Kluwer)]
卷期号:58 (9): 937-943 被引量:3
标识
DOI:10.1097/mcg.0000000000001972
摘要

Background: Gastric structure recognition systems have become increasingly necessary for the accurate diagnosis of gastric lesions in capsule endoscopy. Deep learning, especially using transformer models, has shown great potential in the recognition of gastrointestinal (GI) images according to self-attention. This study aims to establish an identification model of capsule endoscopy gastric structures to improve the clinical applicability of deep learning to endoscopic image recognition. Methods: A total of 3343 wireless capsule endoscopy videos collected at Nanfang Hospital between 2011 and 2021 were used for unsupervised pretraining, while 2433 were for training and 118 were for validation. Fifteen upper GI structures were selected for quantifying the examination quality. We also conducted a comparison of the classification performance between the artificial intelligence model and endoscopists by the accuracy, sensitivity, specificity, and positive and negative predictive values. Results: The transformer-based AI model reached a relatively high level of diagnostic accuracy in gastric structure recognition. Regarding the performance of identifying 15 upper GI structures, the AI model achieved a macroaverage accuracy of 99.6% (95% CI: 99.5-99.7), a macroaverage sensitivity of 96.4% (95% CI: 95.3-97.5), and a macroaverage specificity of 99.8% (95% CI: 99.7-99.9) and achieved a high level of interobserver agreement with endoscopists. Conclusions: The transformer-based AI model can accurately evaluate the gastric structure information of capsule endoscopy with the same performance as that of endoscopists, which will provide tremendous help for doctors in making a diagnosis from a large number of images and improve the efficiency of examination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助醉熏的青筠采纳,获得10
刚刚
1秒前
1秒前
浆果肉丸完成签到,获得积分10
1秒前
无花果应助王慧颖采纳,获得10
1秒前
kkkklin发布了新的文献求助10
1秒前
2秒前
SciGPT应助懒洋洋采纳,获得10
2秒前
2秒前
科目三应助YTMZX采纳,获得30
2秒前
木可可发布了新的文献求助10
3秒前
3秒前
3秒前
Bourne完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
糊涂的桐关注了科研通微信公众号
5秒前
许xu完成签到,获得积分10
5秒前
丘比特应助留胡子的迎梦采纳,获得10
5秒前
5秒前
善学以致用应助计划逃跑采纳,获得10
5秒前
lxaiczn发布了新的文献求助10
5秒前
Katsuya发布了新的文献求助10
6秒前
传奇3应助粗暴的坤采纳,获得10
6秒前
qianyu发布了新的文献求助10
6秒前
7秒前
舒适谷冬发布了新的文献求助10
7秒前
Crystal完成签到,获得积分10
7秒前
棒棒糖完成签到,获得积分10
7秒前
WU发布了新的文献求助10
8秒前
8秒前
闯关的KiKi发布了新的文献求助10
8秒前
8秒前
lmr发布了新的文献求助10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
许xu发布了新的文献求助10
9秒前
aaaaaah发布了新的文献求助10
9秒前
酷波er应助书筠采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759899
求助须知:如何正确求助?哪些是违规求助? 5522591
关于积分的说明 15395720
捐赠科研通 4896858
什么是DOI,文献DOI怎么找? 2633939
邀请新用户注册赠送积分活动 1581980
关于科研通互助平台的介绍 1537467