A Deep Learning Application of Capsule Endoscopic Gastric Structure Recognition Based on a Transformer Model

医学 胶囊 内窥镜检查 变压器 胶囊内镜 人工智能 深度学习 放射科 内科学 物理 植物 量子力学 电压 计算机科学 生物
作者
Qingyuan Li,Weijie Xie,Yusi Wang,Kaiwen Qin,Mei Fa Huang,Tianbao Liu,Zefeiyun Chen,Lü Chen,Lan Teng,Yuxin Fang,Liuhua Ye,Zhen‐Yu Chen,Jie Zhang,Aimin Li,Wei Yang,Side Liu
出处
期刊:Journal of Clinical Gastroenterology [Ovid Technologies (Wolters Kluwer)]
卷期号:58 (9): 937-943 被引量:3
标识
DOI:10.1097/mcg.0000000000001972
摘要

Background: Gastric structure recognition systems have become increasingly necessary for the accurate diagnosis of gastric lesions in capsule endoscopy. Deep learning, especially using transformer models, has shown great potential in the recognition of gastrointestinal (GI) images according to self-attention. This study aims to establish an identification model of capsule endoscopy gastric structures to improve the clinical applicability of deep learning to endoscopic image recognition. Methods: A total of 3343 wireless capsule endoscopy videos collected at Nanfang Hospital between 2011 and 2021 were used for unsupervised pretraining, while 2433 were for training and 118 were for validation. Fifteen upper GI structures were selected for quantifying the examination quality. We also conducted a comparison of the classification performance between the artificial intelligence model and endoscopists by the accuracy, sensitivity, specificity, and positive and negative predictive values. Results: The transformer-based AI model reached a relatively high level of diagnostic accuracy in gastric structure recognition. Regarding the performance of identifying 15 upper GI structures, the AI model achieved a macroaverage accuracy of 99.6% (95% CI: 99.5-99.7), a macroaverage sensitivity of 96.4% (95% CI: 95.3-97.5), and a macroaverage specificity of 99.8% (95% CI: 99.7-99.9) and achieved a high level of interobserver agreement with endoscopists. Conclusions: The transformer-based AI model can accurately evaluate the gastric structure information of capsule endoscopy with the same performance as that of endoscopists, which will provide tremendous help for doctors in making a diagnosis from a large number of images and improve the efficiency of examination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助F1reStone采纳,获得10
1秒前
fan2发布了新的文献求助10
1秒前
2秒前
zain发布了新的文献求助10
2秒前
斯文败类应助ltt采纳,获得10
2秒前
肖恩发布了新的文献求助10
2秒前
3秒前
sususu完成签到,获得积分10
4秒前
有脾气的番茄完成签到,获得积分10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得30
5秒前
阿橘完成签到,获得积分10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
懒大王应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
bmhs2017应助科研通管家采纳,获得10
6秒前
关正卿发布了新的文献求助10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
wxyshare应助科研通管家采纳,获得10
6秒前
TYMY应助科研通管家采纳,获得20
6秒前
大模型应助科研通管家采纳,获得10
7秒前
陈末应助科研通管家采纳,获得10
7秒前
kentonchow应助科研通管家采纳,获得30
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
7秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
不再选择发布了新的文献求助10
9秒前
Jessica发布了新的文献求助10
9秒前
10秒前
方法法国衣服头发完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5417305
求助须知:如何正确求助?哪些是违规求助? 4533248
关于积分的说明 14139038
捐赠科研通 4449321
什么是DOI,文献DOI怎么找? 2440727
邀请新用户注册赠送积分活动 1432507
关于科研通互助平台的介绍 1409910