A Deep Learning Application of Capsule Endoscopic Gastric Structure Recognition Based on a Transformer Model

医学 胶囊 内窥镜检查 变压器 胶囊内镜 人工智能 深度学习 放射科 内科学 计算机科学 植物 量子力学 生物 物理 电压
作者
Qingyuan Li,Weijie Xie,Yusi Wang,Kaiwen Qin,Mei Fa Huang,Tianbao Liu,Zefeiyun Chen,Lü Chen,Lan Teng,Yuxin Fang,Liuhua Ye,Zhen‐Yu Chen,Jie Zhang,Aimin Li,Wei Yang,Side Liu
出处
期刊:Journal of Clinical Gastroenterology [Lippincott Williams & Wilkins]
卷期号:58 (9): 937-943 被引量:1
标识
DOI:10.1097/mcg.0000000000001972
摘要

Background: Gastric structure recognition systems have become increasingly necessary for the accurate diagnosis of gastric lesions in capsule endoscopy. Deep learning, especially using transformer models, has shown great potential in the recognition of gastrointestinal (GI) images according to self-attention. This study aims to establish an identification model of capsule endoscopy gastric structures to improve the clinical applicability of deep learning to endoscopic image recognition. Methods: A total of 3343 wireless capsule endoscopy videos collected at Nanfang Hospital between 2011 and 2021 were used for unsupervised pretraining, while 2433 were for training and 118 were for validation. Fifteen upper GI structures were selected for quantifying the examination quality. We also conducted a comparison of the classification performance between the artificial intelligence model and endoscopists by the accuracy, sensitivity, specificity, and positive and negative predictive values. Results: The transformer-based AI model reached a relatively high level of diagnostic accuracy in gastric structure recognition. Regarding the performance of identifying 15 upper GI structures, the AI model achieved a macroaverage accuracy of 99.6% (95% CI: 99.5-99.7), a macroaverage sensitivity of 96.4% (95% CI: 95.3-97.5), and a macroaverage specificity of 99.8% (95% CI: 99.7-99.9) and achieved a high level of interobserver agreement with endoscopists. Conclusions: The transformer-based AI model can accurately evaluate the gastric structure information of capsule endoscopy with the same performance as that of endoscopists, which will provide tremendous help for doctors in making a diagnosis from a large number of images and improve the efficiency of examination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WD_COMMITS发布了新的文献求助10
刚刚
天马行空完成签到,获得积分10
刚刚
尼古拉耶维奇完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
2秒前
cqx发布了新的文献求助10
3秒前
行走在科研的小路上完成签到,获得积分10
3秒前
超时空盖伦完成签到 ,获得积分10
3秒前
依依完成签到,获得积分10
4秒前
帅气的奔驰完成签到,获得积分20
4秒前
鱼鱼鱼鱼完成签到 ,获得积分10
5秒前
ZJJ完成签到,获得积分10
5秒前
liujianxin完成签到,获得积分20
6秒前
6秒前
7秒前
咕_完成签到 ,获得积分10
8秒前
Ljy完成签到,获得积分10
8秒前
昭玥完成签到,获得积分10
8秒前
9秒前
无花果应助hello采纳,获得10
10秒前
walter发布了新的文献求助10
10秒前
犹豫小海豚完成签到,获得积分10
11秒前
汤圆完成签到 ,获得积分10
11秒前
李健的粉丝团团长应助cqx采纳,获得10
11秒前
与月同行完成签到,获得积分10
12秒前
14秒前
简单的笑蓝完成签到,获得积分10
15秒前
wuqi发布了新的文献求助10
15秒前
lanlan完成签到,获得积分10
17秒前
tym完成签到,获得积分10
17秒前
打打应助walter采纳,获得10
17秒前
幽默白晴完成签到,获得积分10
17秒前
激情的纲完成签到,获得积分10
17秒前
19秒前
Deerlu完成签到,获得积分10
19秒前
沉默的冬寒完成签到 ,获得积分10
19秒前
沉默的冬寒完成签到 ,获得积分10
19秒前
一颗橙子完成签到,获得积分10
20秒前
缓慢的王完成签到,获得积分10
20秒前
落后幼晴完成签到,获得积分10
21秒前
hitzwd完成签到,获得积分10
21秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4143649
求助须知:如何正确求助?哪些是违规求助? 3679833
关于积分的说明 11628229
捐赠科研通 3372764
什么是DOI,文献DOI怎么找? 1852494
邀请新用户注册赠送积分活动 915203
科研通“疑难数据库(出版商)”最低求助积分说明 829702