A Deep Learning Application of Capsule Endoscopic Gastric Structure Recognition Based on a Transformer Model

医学 胶囊 内窥镜检查 变压器 胶囊内镜 人工智能 深度学习 放射科 内科学 物理 植物 量子力学 电压 计算机科学 生物
作者
Qingyuan Li,Weijie Xie,Yusi Wang,Kaiwen Qin,Mei Fa Huang,Tianbao Liu,Zefeiyun Chen,Lü Chen,Lan Teng,Yuxin Fang,Liuhua Ye,Zhen‐Yu Chen,Jie Zhang,Aimin Li,Wei Yang,Side Liu
出处
期刊:Journal of Clinical Gastroenterology [Lippincott Williams & Wilkins]
卷期号:58 (9): 937-943 被引量:1
标识
DOI:10.1097/mcg.0000000000001972
摘要

Background: Gastric structure recognition systems have become increasingly necessary for the accurate diagnosis of gastric lesions in capsule endoscopy. Deep learning, especially using transformer models, has shown great potential in the recognition of gastrointestinal (GI) images according to self-attention. This study aims to establish an identification model of capsule endoscopy gastric structures to improve the clinical applicability of deep learning to endoscopic image recognition. Methods: A total of 3343 wireless capsule endoscopy videos collected at Nanfang Hospital between 2011 and 2021 were used for unsupervised pretraining, while 2433 were for training and 118 were for validation. Fifteen upper GI structures were selected for quantifying the examination quality. We also conducted a comparison of the classification performance between the artificial intelligence model and endoscopists by the accuracy, sensitivity, specificity, and positive and negative predictive values. Results: The transformer-based AI model reached a relatively high level of diagnostic accuracy in gastric structure recognition. Regarding the performance of identifying 15 upper GI structures, the AI model achieved a macroaverage accuracy of 99.6% (95% CI: 99.5-99.7), a macroaverage sensitivity of 96.4% (95% CI: 95.3-97.5), and a macroaverage specificity of 99.8% (95% CI: 99.7-99.9) and achieved a high level of interobserver agreement with endoscopists. Conclusions: The transformer-based AI model can accurately evaluate the gastric structure information of capsule endoscopy with the same performance as that of endoscopists, which will provide tremendous help for doctors in making a diagnosis from a large number of images and improve the efficiency of examination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
郭宇发布了新的文献求助10
3秒前
慕青应助哈哈采纳,获得10
5秒前
CipherSage应助1111111111111采纳,获得10
6秒前
Serena发布了新的文献求助10
7秒前
善学以致用应助mama采纳,获得30
7秒前
花开富贵完成签到,获得积分20
8秒前
14秒前
15秒前
小杨完成签到 ,获得积分10
16秒前
平常元灵完成签到,获得积分10
17秒前
19秒前
小白加油完成签到 ,获得积分10
20秒前
21秒前
22秒前
Rw发布了新的文献求助10
22秒前
24秒前
26秒前
mama发布了新的文献求助30
26秒前
李铛铛发布了新的文献求助10
29秒前
潘果果完成签到,获得积分10
29秒前
karcorl发布了新的文献求助10
30秒前
文献看不懂应助zone采纳,获得10
30秒前
31秒前
Rw完成签到,获得积分20
32秒前
34秒前
34秒前
小蘑菇应助科研通管家采纳,获得10
35秒前
科研通AI5应助科研通管家采纳,获得10
35秒前
orixero应助科研通管家采纳,获得10
35秒前
思源应助科研通管家采纳,获得30
35秒前
赘婿应助科研通管家采纳,获得30
35秒前
隐形曼青应助科研通管家采纳,获得10
35秒前
香蕉觅云应助科研通管家采纳,获得10
35秒前
英俊的铭应助科研通管家采纳,获得30
36秒前
Jasper应助科研通管家采纳,获得10
36秒前
大模型应助科研通管家采纳,获得10
36秒前
852应助科研通管家采纳,获得10
36秒前
顾矜应助科研通管家采纳,获得10
36秒前
pluto应助科研通管家采纳,获得10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776802
求助须知:如何正确求助?哪些是违规求助? 3322227
关于积分的说明 10209363
捐赠科研通 3037491
什么是DOI,文献DOI怎么找? 1666749
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757976