已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

UAV Path Planning Based on the Average TD3 Algorithm With Prioritized Experience Replay

计算机科学 算法 路径(计算) 价值(数学) 机器学习 程序设计语言
作者
Xuqiong Luo,Q. Wang,Hongfang Gong,Chao Tang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 38017-38029 被引量:32
标识
DOI:10.1109/access.2024.3375083
摘要

Path planning is one of the important components of the Unmanned Aerial Vehicle (UAV) mission, and it is also the key guarantee for the successful completion of the UAV’s mission. The traditional path planning algorithm has certain limitations and deficiencies in the complex dynamic environment. Aiming at the dynamic complex obstacle environment, this paper proposes an improved TD3 algorithm, which enables the UAV to complete the autonomous path planning through online learning and continuous trial and error. The algorithm changes the experience pool of TD3 algorithm to priority experience replay, so that the agent can distinguish the importance of empirical samples, improve the sampling efficiency of the algorithm, and reduce the training time. The average TD3 is proposed, and the average value of $Q_{1}Q_{2}$ is taken when the target value is updated to solve the problem of overestimating the $Q$ value while avoiding underestimating the $Q$ value, so that the improved algorithm has better stability and can adapt to various complex obstacle environments. A new reward function is set up, so that each step of the UAV action can receive reward feedback, which solves the problem of sparse reward in deep reinforcement learning. The experimental results show that this method can train the UAV to reach the target safely and quickly in a multi-obstacle environment. Compared with DDPG, SAC and traditional TD3, the path planning success rate of this algorithm is higher than that of the other three algorithms, and the collision rate is lower than that of the comparison algorithm, which has better path planning performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chen发布了新的文献求助10
刚刚
大意的鹤发布了新的文献求助10
1秒前
Ming Chen完成签到,获得积分10
1秒前
2秒前
Criminology34应助贝贝采纳,获得10
2秒前
3秒前
哈哈哈完成签到 ,获得积分10
4秒前
4秒前
4秒前
浮游应助郭子仪采纳,获得10
5秒前
合适尔蝶发布了新的文献求助10
5秒前
6秒前
6秒前
善学以致用应助Yas采纳,获得10
7秒前
搜集达人应助忧心的花瓣采纳,获得10
8秒前
深情安青应助handsomecat采纳,获得10
9秒前
CC柚完成签到 ,获得积分10
9秒前
红毛兔完成签到 ,获得积分10
10秒前
10秒前
11秒前
林艾祎完成签到,获得积分20
11秒前
好的完成签到 ,获得积分10
11秒前
Aintzane完成签到,获得积分10
14秒前
所所应助科研通管家采纳,获得30
15秒前
慕青应助科研通管家采纳,获得10
15秒前
小蘑菇应助科研通管家采纳,获得10
15秒前
Jasper应助科研通管家采纳,获得10
16秒前
ding应助科研通管家采纳,获得10
16秒前
在水一方应助科研通管家采纳,获得10
16秒前
烟花应助科研通管家采纳,获得10
16秒前
隐形曼青应助刘明采纳,获得10
16秒前
科研通AI6应助小刘哥儿采纳,获得10
17秒前
keyboy发布了新的文献求助10
18秒前
大意的鹤完成签到,获得积分10
20秒前
20秒前
天天完成签到,获得积分20
23秒前
23秒前
keyboy完成签到,获得积分10
28秒前
28秒前
我是老大应助刘露采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312489
求助须知:如何正确求助?哪些是违规求助? 4456148
关于积分的说明 13865749
捐赠科研通 4344664
什么是DOI,文献DOI怎么找? 2386013
邀请新用户注册赠送积分活动 1380317
关于科研通互助平台的介绍 1348719