Phenol and Phthalate Effects on Thyroid Hormone Levels during Pregnancy: Relying on In Vitro Assays and Adverse Outcome Pathways to Inform an Epidemiological Analysis

邻苯二甲酸盐 医学 怀孕 二羟基化合物 激素 甲状腺 生理学 内科学 三碘甲状腺素 内分泌学 化学 生物 双酚A 遗传学 有机化学 环氧树脂
作者
Dorothy Nakiwala,Pamela D. Noyes,Patrice Faure,Benoît Chovelon,Christelle Corne,Anne‐Sophie Gauchez,Dorra Guergour,Sarah Lyon-Caen,Amrit Kaur Sakhi,Azemira Sabaredzovic,Cathrine Thomsen,Isabelle Pin,Rémy Slama,Claire Philippat
出处
期刊:Environmental Health Perspectives [National Institute of Environmental Health Sciences]
卷期号:130 (11) 被引量:12
标识
DOI:10.1289/ehp10239
摘要

Background: Studies characterizing associations between phenols, phthalates and thyroid hormones during pregnancy produce inconsistent results. This divergence may be partly attributable to false positives due to multiple comparison testing of large numbers of chemicals, and measurement error as studies rely on small numbers of biospecimens despite high intra-individual variability in urinary chemical metabolite concentrations. Objectives: This study employs a priori chemical filtering and expanded urinary biomonitoring to evaluate associations between phenol/phthalate exposures and serum thyroid hormones assessed during pregnancy. Methods: A two-tiered approach was implemented: a) In vitro high-throughput screening results from the ToxCast/Tox21 database, as informed by a thyroid Adverse Outcome Pathway network, were evaluated to select phenols/phthalates with activity on known and putative molecular initiating events in the thyroid pathway; and b) Adjusted linear regressions were used to study associations between filtered compounds and serum thyroid hormones measured in 437 pregnant women recruited in Grenoble area (France) between 2014 and 2017. Phenol/phthalate metabolites were measured in repeated spot urine sample pools (median: 21 samples/women). Results: The ToxCast/Tox21 screening reduced the chemical set from 16 to 13 and the associated number of statistical comparisons by 19%. Parabens were negatively associated with free triiodothyronine (T3) and the T3/T4 (total thyroxine) ratio. Monobenzyl phthalate was positively associated with total T4 and negatively with the T3/T4 ratio. Effect modification by iodine status was detected for several compounds (among them ΣDEHP and mono-n-butyl phthalate) that were associated with some hormones among women with normal iodine levels. Conclusion: For these chemicals, screening for compounds with an increased likelihood for thyroid-related effects and relying on repeated urine samples to assess exposures improved the overall performance of multichemical analyses of thyroid disruption. This approach may improve future evaluations of human data for the thyroid pathway with implication for fetal health and may serve as a model for evaluating other toxicity outcomes. https://doi.org/10.1289/EHP10239
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小雨点发布了新的文献求助10
刚刚
七七完成签到 ,获得积分10
1秒前
1秒前
5秒前
小羊发布了新的文献求助10
5秒前
马喽完成签到,获得积分10
5秒前
研友_8KKMP8发布了新的文献求助10
9秒前
无奈犀牛完成签到,获得积分10
9秒前
Lucas应助学术大牛采纳,获得10
12秒前
现实的飞风完成签到,获得积分10
14秒前
15秒前
章鱼小丸子完成签到,获得积分10
16秒前
18秒前
wanci应助云中鸮采纳,获得10
18秒前
少女和猫发布了新的文献求助30
22秒前
小m发布了新的文献求助10
22秒前
南桑发布了新的文献求助10
24秒前
Starry完成签到,获得积分10
24秒前
生动的大地完成签到,获得积分20
26秒前
脑洞疼应助土豆酱采纳,获得10
26秒前
研友_8KKMP8完成签到,获得积分10
26秒前
大模型应助小人物采纳,获得10
30秒前
小蘑菇应助南桑采纳,获得10
30秒前
小胖完成签到,获得积分10
34秒前
852应助99采纳,获得10
36秒前
39秒前
traetrae完成签到,获得积分10
39秒前
充电宝应助爬不起来采纳,获得10
40秒前
Wei完成签到 ,获得积分10
41秒前
可爱的函函应助yihua采纳,获得10
42秒前
Teddyboy完成签到,获得积分10
43秒前
Taemy完成签到,获得积分10
43秒前
可靠的冰烟完成签到,获得积分10
43秒前
学术大牛发布了新的文献求助10
44秒前
科研通AI5应助SHENZH采纳,获得10
44秒前
搜集达人应助后羿采纳,获得10
45秒前
45秒前
46秒前
AAA完成签到,获得积分10
47秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835031
求助须知:如何正确求助?哪些是违规求助? 3377559
关于积分的说明 10499056
捐赠科研通 3097028
什么是DOI,文献DOI怎么找? 1705435
邀请新用户注册赠送积分活动 820590
科研通“疑难数据库(出版商)”最低求助积分说明 772123