Meta-PCP: A concise representation of prevalent co-location patterns discovered from spatial data

计算机科学 代表(政治) 空间分析 数据挖掘 人工智能 模式识别(心理学) 情报检索 统计 数学 政治学 政治 法学
作者
Vanha Tran
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:213: 119255-119255
标识
DOI:10.1016/j.eswa.2022.119255
摘要

A prevalent co-location pattern (PCP), which is a group of spatial features whose spatial instances frequently appear together in nearby geographical areas, can expose valuable information and knowledge that can be applied to many fields. In traditional PCP mining, to filter interesting PCPs, a minimum prevalence threshold is employed. This threshold should be set to a small value to obtain as much information and knowledge as possible from spatial data sets. However, at this time, not only too many redundant patterns are found, but also mining efficiency is extremely low and memory space consumption is very high. To solve this self-contradiction, this paper proposes a new concept that is called meta-prevalent co-location pattern (meta-PCP). Meta-PCPs can eliminate redundant information and concisely represent the mining result. Although meta-PCPs are a lossy representation of all PCPs, they can be controlled by users according to their application scenarios. Moreover, a query-based mining algorithm is designed to improve mining performance when the prevalence threshold is set to very low. This algorithm discovers meta-PCPs without generating candidates (to improve efficiency) and does not collect and remain co-location instances of each pattern (to reduce memory consumption). The comprehensive experimental results on both synthetic and real data sets show that the proposed method is effective and efficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
丁昆发布了新的文献求助30
3秒前
舒适怀寒完成签到 ,获得积分10
4秒前
5秒前
cdercder应助MY采纳,获得10
5秒前
平淡路人完成签到,获得积分10
8秒前
没事就是玩发布了新的文献求助100
10秒前
丁昆完成签到,获得积分10
10秒前
不安豁完成签到,获得积分10
10秒前
Jenkin发布了新的文献求助10
13秒前
闲来逛逛007完成签到 ,获得积分10
17秒前
gsj完成签到 ,获得积分10
19秒前
19秒前
19秒前
111关闭了111文献求助
20秒前
卡卡西应助123号采纳,获得10
20秒前
21秒前
song完成签到 ,获得积分10
23秒前
ruiheng发布了新的文献求助10
23秒前
呆萌芙蓉发布了新的文献求助10
24秒前
ANESTHESIA_XY完成签到 ,获得积分10
25秒前
26秒前
26秒前
丫丫发布了新的文献求助10
30秒前
脑洞疼应助葡萄茶茶果采纳,获得10
32秒前
科研通AI2S应助Elytra采纳,获得10
34秒前
34秒前
嘎发完成签到,获得积分10
35秒前
李健的小迷弟应助谢谢采纳,获得10
35秒前
发一篇Nature完成签到 ,获得积分10
36秒前
zzz完成签到,获得积分10
37秒前
流沙完成签到,获得积分10
37秒前
小蓝完成签到,获得积分10
38秒前
曾经的依风完成签到,获得积分10
39秒前
39秒前
丫丫完成签到 ,获得积分10
40秒前
scinature完成签到,获得积分10
43秒前
44秒前
46秒前
YUYUYU完成签到,获得积分10
48秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808961
求助须知:如何正确求助?哪些是违规求助? 3353681
关于积分的说明 10366466
捐赠科研通 3069917
什么是DOI,文献DOI怎么找? 1685835
邀请新用户注册赠送积分活动 810750
科研通“疑难数据库(出版商)”最低求助积分说明 766320