鼻息肉
川地163
HMOX1型
转录组
医学
基因表达
接收机工作特性
免疫学
基因表达谱
病理
巨噬细胞
基因
生物
内科学
遗传学
血红素加氧酶
血红素
生物化学
体外
酶
作者
E.D. Wang,Yunpeng Hao,Jing Song,Jing Yuan,Yu Hong,Ying Li,Yang Wang,Chengshuo Wang,Ming Wang,Luo Zhang
摘要
Abstract Background Molecular signatures of chronic rhinosinusitis with nasal polyps (CRSwNP) related to macrophages remain unclear. This study aimed to develop a macrophage‐associated diagnostic signature for CRSwNP. Methods Transcriptome data from 54 patients with CRSwNP and 37 healthy controls across GSE136825, GSE36830, and GSE72713 were used to identify differentially expressed genes (DEGs) between two groups. Gene Set Enrichment Analysis and Weighted Gene Co‐Expression Network Analysis pinpointed crucial pathways and gene clusters. A diagnostic model was created from these analyses and receiver operating characteristic curve (ROC), and further validated in our transcriptome data from 29 samples. Immune cell infiltration analysis was performed and linked those diagnostic genes to macrophages and verified by single‐cell RNA sequencing data. Immunofluorescence co‐staining of CD163 and HMOX1 was performed in nasal tissues. Mouse bone marrow‐derived macrophage (BMDMs) cultures were used in functional experiments. Correlations between the expression of HMOX1 and eotaxin genes were investigated. Results DEGs of CRSwNP versus control group were enriched in the INTERLEUKIN_4_AND_13_SIGNALING pathways. A four‐gene diagnostic model (HMOX1, ALOX5, F13A1 and ITGB2) was developed and demonstrated high diagnostic precision with an area under ROC curve of 0.980 for training dataset and 0.895 for test dataset. M2 macrophage presence and HMOX1 expression significantly correlated with CRSwNP ( p < 0.001). Single‐cell RNA sequencing data underscored the altered cellular composition in CRSwNP, with HMOX1 notably expressed in M2 macrophages. Immunofluorescence staining highlighted the increased infiltration of CD163+ M2 macrophages in nasal mucosa samples of eosinophilic CRSwNP, which correlated with HMOX1 protein levels ( p < 0.05). The HMOX1 inhibitor zinc protoporphyrin reduced the ratio of CD163 + HMOX1 + M2 macrophages in mouse BMDM cultures ( p < 0.05). HMOX1 expression showed a strong positive correlation with the expression of eotaxin genes (CCL11, CCL24, and CCL26; p < 0.05 respectively). Conclusion M2 macrophage‐derived HMOX1 can be used as an innovative diagnostic signature for CRSwNP, which might be a potential regulator of eosinophilic inflammation.
科研通智能强力驱动
Strongly Powered by AbleSci AI