Convolution Bridge: An Effective Algorithmic Migration Strategy From CNNs to GNNs

卷积(计算机科学) 桥(图论) 计算机科学 数学优化 算法 人工智能 数学 生物 人工神经网络 解剖
作者
Kuijie Zhang,Shanchen Pang,Huahui Yang,Yuanyuan Zhang,Wenhao Wu,Hengxiao Li,Jerry Chun‐Wei Lin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2025.3527501
摘要

Graph neural networks (GNNs), as a rising star in machine learning, are widely used in relational data models and have achieved outstanding performance in graph tasks. GNN continuously takes inspiration from mature models in other domains such as computer vision and natural language processing to motivate the development of graph algorithms. However, due to the various data structures from different domains, the cross-domain migration of models has to go through a long period of disassembly and reconstruction, which may not yield the desired results. To preserve the excellent properties of convolution and optimize the migration process from convolutional neural networks (CNNs) to GNNs, we propose a convolution bridge. The convolution bridge realizes the data alignment from CNN to GNN, so that the CNN-based model can be efficiently migrated to the graph structure model. To demonstrate the effectiveness of our migration strategy, we migrated the inception module and U-Net architecture from CNNs to GNNs, named GraInc and GraU-Net, for the node-level task and the graph-level task, respectively. Experimental results show that GraInc and GraU-Net are highly competitive compared to the current state-of-the-art models, particularly on dense graph datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
风清扬应助默默小鸽子采纳,获得10
1秒前
1秒前
2秒前
M88888完成签到,获得积分10
2秒前
Ava应助南天采纳,获得10
3秒前
yar应助读书的时候采纳,获得10
4秒前
kissssp发布了新的文献求助10
4秒前
无略完成签到,获得积分10
6秒前
1l完成签到,获得积分10
6秒前
6秒前
7秒前
8秒前
Limengjie完成签到,获得积分20
8秒前
8秒前
打打应助学术蝗虫采纳,获得10
8秒前
吴豁发布了新的文献求助10
8秒前
人生如梦完成签到,获得积分10
9秒前
yidashi完成签到,获得积分10
9秒前
学术裁缝完成签到,获得积分10
9秒前
xiao123789完成签到,获得积分10
10秒前
11秒前
11秒前
刘亚博完成签到 ,获得积分20
11秒前
传奇3应助搬砖美少女采纳,获得10
11秒前
ikun完成签到,获得积分10
12秒前
cc发布了新的文献求助10
12秒前
科研通AI2S应助zz采纳,获得10
15秒前
16秒前
健忘飞风发布了新的文献求助10
17秒前
17秒前
在水一方应助xxxx_w采纳,获得30
18秒前
不配.应助Singularity采纳,获得10
20秒前
桐桐应助晴云采纳,获得10
21秒前
21秒前
sunbursl发布了新的文献求助10
22秒前
22秒前
23秒前
23秒前
健忘飞风完成签到,获得积分10
24秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1018
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Eco-Friendly Skin Solutions for Natural Cosmeceuticals 500
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4083037
求助须知:如何正确求助?哪些是违规求助? 3622381
关于积分的说明 11491398
捐赠科研通 3337181
什么是DOI,文献DOI怎么找? 1834521
邀请新用户注册赠送积分活动 903429
科研通“疑难数据库(出版商)”最低求助积分说明 821609