清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Enhancing detection of SSVEPs using discriminant compacted network

计算机科学 人工智能 模式识别(心理学) 水准点(测量) 线性判别分析 脑-机接口 人工神经网络 可穿戴计算机 解码方法 判别式 脑电图 算法 心理学 大地测量学 精神科 嵌入式系统 地理
作者
Dian Li,Yongzhi Huang,Ruixin Luo,Liancheng Zhao,Xiaolin Xiao,Kun Wang,Weibo Yi,Minpeng Xu,Dong Ming
出处
期刊:Journal of Neural Engineering [IOP Publishing]
标识
DOI:10.1088/1741-2552/adb0f2
摘要

Abstract Abstract—Objective. Steady-state visual evoked potential-based brain-computer interfaces (SSVEP-BCIs) have gained significant attention due to their simplicity, high signal to noise ratio (SNR) and high information transfer rates (ITRs). Currently, accurate detection is a critical issue for enhancing the performance of SSVEP-BCI systems. Approach. This study proposed a novel decoding method called Discriminant Compacted Network (Dis-ComNet), which exploited the advantages of both spatial filtering and deep learning. Specifically, this study enhanced SSVEP features using Global template alignment (GTA) and Discriminant Spatial Pattern (DSP), and then designed a Compacted Temporal-Spatio module (CTSM) to extract finer features. The proposed method was evaluated on a self-collected high-frequency dataset, a public Benchmark dataset and a public wearable dataset. Main Results. The results showed that Dis-ComNet significantly outperformed state-of-the-art spatial filtering methods, deep learning methods, and other fusion methods. Remarkably, Dis-ComNet improved the classification accuracy by 3.9%, 3.5%, 3.2%, 13.3%, 17.4%, 37.5%, and 2.5% when comparing with eTRCA, eTRCA-R, TDCA, DNN, EEGnet, Ensemble-DNN, and TRCA-Net respectively in the high-frequency dataset. The achieved results were 4.7%, 4.6%, 23.6%, 52.5%, 31.7%, and 7.0% higher than those of eTRCA, eTRCA-R, DNN, EEGnet, Ensemble-DNN, and TRCA-Net, respectively, and were comparable to those of TDCA in Benchmark dataset.The accuracy of Dis-ComNet in the wearable dataset was 9.5%, 7.1%, 36.1%, 26.3%, 15.7% and 4.7% higher than eTRCA, eTRCA-R, DNN, EEGnet, Ensemble-DNN, and TRCA-Net respectively, and comparable to TDCA. Besides, our model achieved the ITRs up to 126.0 bits/min, 236.4 bits/min and 103.6 bits/min in the high-frequency, Benchmark and the wearable datasets respectively. Significance. This study develops an effective model for the detection of SSVEPs, facilitating the development of high accuracy SSVEP-BCI systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhuosht完成签到 ,获得积分10
3秒前
研友_LMpo68完成签到 ,获得积分10
3秒前
6秒前
无花果应助5476采纳,获得10
12秒前
victory_liu完成签到,获得积分10
15秒前
陈醋塔塔完成签到,获得积分10
21秒前
lql完成签到 ,获得积分10
28秒前
29秒前
个性松完成签到 ,获得积分10
35秒前
TY完成签到 ,获得积分10
36秒前
陶军辉完成签到 ,获得积分10
36秒前
38秒前
minuxSCI完成签到,获得积分10
39秒前
41秒前
丁娜发布了新的文献求助10
41秒前
顺利问玉完成签到 ,获得积分10
47秒前
5476发布了新的文献求助10
47秒前
广阔天地完成签到 ,获得积分10
49秒前
拼搏的白云完成签到,获得积分10
52秒前
lixy发布了新的文献求助10
56秒前
1分钟前
宏伟应助Cindy采纳,获得10
1分钟前
1分钟前
1分钟前
Eric800824完成签到 ,获得积分10
1分钟前
光亮的冰薇完成签到 ,获得积分10
1分钟前
zhangsan完成签到,获得积分10
1分钟前
大气黑米完成签到 ,获得积分10
1分钟前
有魅力天抒完成签到 ,获得积分10
1分钟前
充电宝应助5476采纳,获得10
1分钟前
1分钟前
nine2652完成签到 ,获得积分10
1分钟前
1分钟前
yindi1991完成签到 ,获得积分10
2分钟前
5476发布了新的文献求助10
2分钟前
Alger完成签到,获得积分10
2分钟前
善学以致用应助adeno采纳,获得10
2分钟前
你今天学了多少完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784835
求助须知:如何正确求助?哪些是违规求助? 3330070
关于积分的说明 10244297
捐赠科研通 3045435
什么是DOI,文献DOI怎么找? 1671691
邀请新用户注册赠送积分活动 800613
科研通“疑难数据库(出版商)”最低求助积分说明 759541